Tesseract-Engine/assets/scripts/math.lua

305 lines
6.9 KiB
Lua
Raw Normal View History

2024-12-28 18:07:06 +00:00
-- math.lua
-- Math constants
local MathConstants = {
PI = 3.141592653589793,
E = 2.718281828459045,
TAU = 6.283185307179586, -- 2 * PI
HALF_PI = 1.5707963267948966, -- PI / 2
SQRT2 = 1.4142135623730951, -- Square root of 2
LN2 = 0.6931471805599453 -- Natural log of 2
2024-12-28 18:07:06 +00:00
}
-- Basic math functions
local MathFunctions = {}
function MathFunctions.square(x)
return x * x
end
function MathFunctions.cube(x)
return x * x * x
end
function MathFunctions.max(...)
local args = {...}
local maxVal = args[1]
for i = 2, #args do
if args[i] > maxVal then
maxVal = args[i]
end
end
return maxVal
2024-12-28 18:07:06 +00:00
end
function MathFunctions.min(...)
local args = {...}
local minVal = args[1]
for i = 2, #args do
if args[i] < minVal then
minVal = args[i]
end
end
return minVal
2024-12-28 18:07:06 +00:00
end
function MathFunctions.clamp(value, minValue, maxValue)
return MathFunctions.max(minValue, MathFunctions.min(value, maxValue))
end
function MathFunctions.lerp(a, b, t)
return a + (b - a) * t
end
function MathFunctions.is_close(a, b, tolerance)
tolerance = tolerance or 1e-9
return MathFunctions.abs(a - b) <= tolerance
end
-- Optimized absolute value function
function MathFunctions.abs(x)
return (x < 0) and -x or x
2024-12-28 18:07:06 +00:00
end
-- Trigonometric functions
local TrigFunctions = {}
-- Manual definitions of hyperbolic functions
function TrigFunctions.sinh(x)
return (math.exp(x) - math.exp(-x)) / 2
end
function TrigFunctions.cosh(x)
return (math.exp(x) + math.exp(-x)) / 2
end
function TrigFunctions.tanh(x)
return (math.exp(x) - math.exp(-x)) / (math.exp(x) + math.exp(-x))
end
function TrigFunctions.asinh(x)
return math.log(x + math.sqrt(x * x + 1))
end
function TrigFunctions.acosh(x)
return math.log(x + math.sqrt(x * x - 1))
end
function TrigFunctions.atanh(x)
return 0.5 * math.log((1 + x) / (1 - x))
end
function TrigFunctions.sin(x)
return math.sin(x)
end
function TrigFunctions.cos(x)
return math.cos(x)
end
function TrigFunctions.tan(x)
return math.tan(x)
end
function TrigFunctions.atan2(y, x)
return math.atan2(y, x)
end
function TrigFunctions.hypot(x, y)
return math.sqrt(x * x + y * y)
end
-- Angle normalization and utilities
function TrigFunctions.normalize_angle_rad(angle)
angle = angle % MathConstants.TAU
if angle < 0 then
angle = angle + MathConstants.TAU
end
return angle
end
function TrigFunctions.normalize_angle_pi(angle)
angle = angle % MathConstants.TAU
if angle <= -MathConstants.PI then
angle = angle + MathConstants.TAU
elseif angle > MathConstants.PI then
angle = angle - MathConstants.TAU
end
return angle
end
-- Exponential and logarithmic functions
local ExpFunctions = {}
function ExpFunctions.exp(x)
return math.exp(x)
end
function ExpFunctions.log(x, base)
if base then
return math.log(x) / math.log(base)
end
return math.log(x)
end
function ExpFunctions.pow(base, exponent)
return base ^ exponent
end
function ExpFunctions.sqrt(x)
return math.sqrt(x)
end
-- Random utility functions
local RandomFunctions = {}
function RandomFunctions.random(min, max)
if min and max then
return math.random() * (max - min) + min
elseif min then
return math.random() * min
else
return math.random()
end
end
function RandomFunctions.random_int(min, max)
return math.random(min, max)
2024-12-28 18:07:06 +00:00
end
-- Statistical functions
local StatFunctions = {}
-- Calculate the mean of a list of numbers
function StatFunctions.mean(numbers)
local sum = 0
for _, num in ipairs(numbers) do
sum = sum + num
end
return sum / #numbers
2024-12-28 18:07:06 +00:00
end
-- Calculate the median of a list of numbers
function StatFunctions.median(numbers)
table.sort(numbers)
local n = #numbers
if n % 2 == 1 then
return numbers[math.ceil(n / 2)]
else
return (numbers[n / 2] + numbers[(n / 2) + 1]) / 2
end
end
-- Calculate the mode of a list of numbers
function StatFunctions.mode(numbers)
local counts = {}
local max_count = 0
local mode_val = numbers[1]
for _, num in ipairs(numbers) do
counts[num] = (counts[num] or 0) + 1
if counts[num] > max_count then
max_count = counts[num]
mode_val = num
end
end
return mode_val
end
-- Calculate the variance of a list of numbers
function StatFunctions.variance(numbers)
local mean_val = StatFunctions.mean(numbers)
local sum_sq_diff = 0
for _, num in ipairs(numbers) do
sum_sq_diff = sum_sq_diff + (num - mean_val) ^ 2
end
return sum_sq_diff / #numbers
end
-- Calculate the standard deviation of a list of numbers
function StatFunctions.stddev(numbers)
return math.sqrt(StatFunctions.variance(numbers))
end
-- Advanced mathematical functions
local AdvancedMath = {}
-- Calculate factorial of n
function AdvancedMath.factorial(n)
assert(n >= 0 and math.floor(n) == n, "Factorial is only defined for non-negative integers.")
if n == 0 or n == 1 then
return 1
else
return n * AdvancedMath.factorial(n - 1)
end
end
-- Calculate permutations P(n, k)
function AdvancedMath.permutation(n, k)
assert(n >= 0 and k >= 0 and math.floor(n) == n and math.floor(k) == k, "Permutation requires non-negative integers.")
if k > n then
return 0
end
return AdvancedMath.factorial(n) / AdvancedMath.factorial(n - k)
end
-- Calculate combinations C(n, k)
function AdvancedMath.combination(n, k)
assert(n >= 0 and k >= 0 and math.floor(n) == n and math.floor(k) == k, "Combination requires non-negative integers.")
if k > n then
return 0
end
return AdvancedMath.factorial(n) / (AdvancedMath.factorial(k) * AdvancedMath.factorial(n - k))
end
-- Calculate the Greatest Common Divisor using Euclidean algorithm
function AdvancedMath.gcd(a, b)
a = math.abs(a)
b = math.abs(b)
while b ~= 0 do
a, b = b, a % b
end
return a
end
-- Calculate the Least Common Multiple
function AdvancedMath.lcm(a, b)
a = math.abs(a)
b = math.abs(b)
if a == 0 or b == 0 then
return 0
end
return (a * b) / AdvancedMath.gcd(a, b)
end
-- Numerical approximation of the derivative of a function f at point x
function AdvancedMath.derivative(f, x, h)
h = h or 1e-5
return (f(x + h) - f(x - h)) / (2 * h)
end
-- Numerical approximation of the integral of a function f from a to b using the trapezoidal rule
function AdvancedMath.integral(f, a, b, n)
n = n or 1000
local h = (b - a) / n
local sum = 0.5 * (f(a) + f(b))
for i = 1, n - 1 do
sum = sum + f(a + i * h)
end
return sum * h
end
-- Statistical and Advanced Math Functions can be grouped similarly
2024-12-28 18:07:06 +00:00
-- Export the math module
local Math = {
constants = MathConstants,
functions = MathFunctions,
trig = TrigFunctions,
exp = ExpFunctions,
random = RandomFunctions,
stats = StatFunctions,
advanced = AdvancedMath
2024-12-28 18:07:06 +00:00
}
return Math