added files from previous

This commit is contained in:
Spencer Conlon 2024-12-24 05:11:53 +00:00
parent 1cb7bdba56
commit 5ea18b5958
5 changed files with 845 additions and 97 deletions

View File

@ -1,5 +1,5 @@
filename = "try_to_fix_me.asm"
filename = "test.asm"
#
@ -86,15 +86,24 @@ def convert_to_int(value):
import os
from termcolor import colored
macro_definitions = {}
def preprocess(lines, filename="main.asm", included_files=None):
if included_files is None:
included_files = set() # Tracks included files to prevent recursion
def preprocess(lines, filename="main.asm"):
errors = []
warnings = []
error_flag = False
# Memory and stack tracking
instruction_count = 0
memory_limit = 256 # Total memory available
memory_limit = 1024 # Total memory available
stack_balance = 0
program_length = 0 # To calculate and validate memory access
@ -102,12 +111,65 @@ def preprocess(lines, filename="main.asm"):
valid_registers = {"a", "b", "c", "d", "e", "f"}
valid_instructions = {"ldw", "mov", "add", "sub", "str", "ldr", "int",
"push", "pop", "jsr", "ret", "xor", "and", "jmp",
"mul", "div", "bne", "beq", "blt"}
"mul", "div", "bne", "beq", "blt", "ldb", "stb"}
label_references = []
labels = {}
# First pass: Parse instructions and calculate program length
# Expand include directives
expanded_lines = []
for line_number, line in enumerate(lines, start=1):
code = line.strip()
if code.startswith("%include"):
# Handle include directives
parts = code.split(maxsplit=1)
if len(parts) != 2:
errors.append((line_number, "Invalid %include syntax", line))
error_flag = True
continue
include_file = parts[1].strip("\"")
if include_file in included_files:
errors.append((line_number, f"Recursive inclusion detected for file '{include_file}'", line))
error_flag = True
continue
if not os.path.exists(include_file):
errors.append((line_number, f"Included file '{include_file}' not found", line))
error_flag = True
continue
try:
included_files.add(include_file)
with open(include_file, 'r') as f:
included_lines = f.readlines()
expanded_lines.extend(preprocess(included_lines, filename=include_file, included_files=included_files))
except Exception as e:
errors.append((line_number, f"Failed to include file '{include_file}': {str(e)}", line))
error_flag = True
elif code.startswith("%define"):
# Handle macros
parts = code.split(maxsplit=2)
if len(parts) != 3:
errors.append((line_number, "Invalid %define syntax", line))
error_flag = True
continue
macro_name, macro_value = parts[1], parts[2]
if macro_name in macro_definitions:
errors.append((line_number, f"Macro '{macro_name}' redefined", line))
error_flag = True
continue
macro_definitions[macro_name] = macro_value
continue # Skip adding %define line to the output
else:
expanded_lines.append(line)
# First pass: Parse instructions and calculate program length
for line_number, line in enumerate(expanded_lines, start=1):
code = line.split(";")[0].strip() # Strip comments and whitespace
if not code:
continue
@ -116,94 +178,114 @@ def preprocess(lines, filename="main.asm"):
if code.endswith(":"):
label_name = code[:-1]
if label_name in labels:
warnings.append((line_number, f"duplicate label '{label_name}'", line))
warnings.append((line_number, f"Duplicate label '{label_name}'", line))
labels[label_name] = instruction_count
continue
# Parse instruction
parts = re.split(r"\s+", code)
parts = code.split()
instruction = parts[0].lower()
if instruction in valid_instructions:
if instruction in {"ldw", "mov", "add", "sub", "str", "ldr", "xor", "and", "mul", "div"}:
instruction_count += 3 # These are 3-byte instructions
if instruction == "db":
# Handle string definitions
if len(parts) < 2:
errors.append((line_number, f"Missing operand for '{instruction}'", line))
error_flag = True
continue
string_literal = " ".join(parts[1:]).strip("\"")
instruction_count += len(string_literal) + 1 # Include null terminator
elif instruction in valid_instructions:
if instruction in {"ldw", "mov", "add", "sub", "str", "ldr", "xor", "and", "mul", "div", "ldb", "stb"}:
instruction_count += 3
elif instruction in {"bne", "beq", "blt"}:
instruction_count += 4 # Conditional branches are 4-byte instructions
instruction_count += 4
elif instruction in {"push", "pop", "int", "jmp", "jsr", "ret"}:
instruction_count += 3 # Fixed size for other instructions
instruction_count += 3
else:
errors.append((line_number, f"unknown instruction '{instruction}'", line))
errors.append((line_number, f"Unknown instruction '{instruction}'", line))
error_flag = True
program_length = instruction_count # Final length of the program
# Second pass: Validate instructions and operands
for line_number, line in enumerate(lines, start=1):
code = line.split(";")[0].strip() # Strip comments and whitespace
for line_number, line in enumerate(expanded_lines, start=1):
code = line.split(";")[0].strip()
if not code:
continue
# Skip labels
# Handle labels
if code.endswith(":"):
continue
parts = re.split(r"\s+", code)
parts = code.split()
instruction = parts[0].lower()
operands = parts[1:] if len(parts) > 1 else []
# Strip commas from registers and operands
operands = [op.replace(",", "") for op in operands]
# Handle db strings
if instruction == "db":
string_literal = " ".join(operands).strip("\"")
if not string_literal:
errors.append((line_number, "Empty string literal in 'db'", line))
error_flag = True
continue
# Validate instruction and operands
# Strip commas from operands
operands = [op.replace(",", "") for op in operands]
# Validate instruction and operands (same as before)
if instruction == "ldw" and len(operands) == 2:
reg, value = operands
if reg not in valid_registers:
errors.append((line_number, f"invalid register '{reg}'", line))
errors.append((line_number, f"Invalid register '{reg}'", line))
error_flag = True
elif instruction == "str" and len(operands) == 2:
reg, address = operands
if reg not in valid_registers:
errors.append((line_number, f"invalid register '{reg}'", line))
errors.append((line_number, f"Invalid register '{reg}'", line))
error_flag = True
try:
mem_address = int(address, 16)
if str(address).startswith("0x"):
mem_address = int(address, 16)
else:
mem_address = int(address)
if mem_address < program_length:
errors.append((line_number, f"illegal memory write to program space in '{code}'", line))
errors.append((line_number, f"Illegal memory write to program space in '{code}'", line))
error_flag = True
if mem_address > memory_limit:
errors.append((line_number, f"illegal memory write out of bounds in '{code}'", line))
errors.append((line_number, f"Illegal memory write out of bounds in '{code}'", line))
error_flag = True
except ValueError:
errors.append((line_number, f"invalid memory address '{address}'", line))
errors.append((line_number, f"Invalid memory address '{address}'", line))
error_flag = True
elif instruction in {"add", "sub", "mov", "xor", "and", "mul", "div"} and len(operands) == 2:
elif instruction in {"add", "sub", "mov", "xor", "and", "mul", "div", "ldb", "stb"} and len(operands) == 2:
reg1, reg2 = operands
if reg1 not in valid_registers or reg2 not in valid_registers:
errors.append((line_number, f"invalid register(s) in '{code}'", line))
errors.append((line_number, f"Invalid register(s) in '{code}'", line))
error_flag = True
elif instruction in {"push", "pop"} and len(operands) == 1:
reg = operands[0]
if reg not in valid_registers:
errors.append((line_number, f"invalid register '{reg}'", line))
errors.append((line_number, f"Invalid register '{reg}'", line))
error_flag = True
if instruction == "push":
stack_balance += 1
if stack_balance > 16: # Example stack limit
warnings.append((line_number, "stack overflow detected", line))
warnings.append((line_number, "Stack overflow detected", line))
elif instruction == "pop":
stack_balance -= 1
if stack_balance < 0:
errors.append((line_number, f"stack underflow detected at '{code}'", line))
errors.append((line_number, f"Stack underflow detected at '{code}'", line))
error_flag = True
# Validate branch instructions with two registers and one label
elif instruction in {"bne", "beq", "blt"}:
if len(operands) != 3:
errors.append((line_number, f"branch instruction '{instruction}' should have 2 registers and 1 label", line))
errors.append((line_number, f"Branch instruction '{instruction}' should have 2 registers and 1 label", line))
error_flag = True
else:
reg1, reg2, label = operands
if reg1 not in valid_registers or reg2 not in valid_registers:
errors.append((line_number, f"invalid register(s) in '{instruction}'", line))
errors.append((line_number, f"Invalid register(s) in '{instruction}'", line))
error_flag = True
label_references.append((line_number, label, line)) # The third operand should be a label
@ -217,12 +299,12 @@ def preprocess(lines, filename="main.asm"):
# Check undefined labels
for line_number, label, line in label_references:
if label not in labels:
errors.append((line_number, f"undefined label '{label}'", line))
errors.append((line_number, f"Undefined label '{label}'", line))
error_flag = True
# Check stack balance at the end
# Check stack balance
if stack_balance != 0:
warnings.append((0, "stack imbalance detected, unbalanced push/pop operations", ""))
warnings.append((0, "Stack imbalance detected, unbalanced push/pop operations", ""))
# Print errors and warnings
for line_number, message, code_line in errors:
@ -236,25 +318,22 @@ def preprocess(lines, filename="main.asm"):
else:
print(colored(f"{filename}:{line_number}: warning: {message}", "yellow"))
print(colored(f" {line_number} | {code_line}", "white"))
if program_length >= memory_limit:
error_flag = True
print(colored(f"GLOBAL: error: Program too big, size: {program_length}", "red"))
# Final success message
if not error_flag:
print(colored("Preprocessing complete. No errors detected!", "green"))
print(colored(f"{filename}: Done!", "green"))
else:
exit(1)
return expanded_lines
preprocess(lines)
lines = preprocess(lines, filename=filename)
@ -263,19 +342,39 @@ preprocess(lines)
lineNumber = 0
COMPILE_ERROR = False
def _ValueError(message):
global COMPILE_ERROR
COMPILE_ERROR = True
print("ValueError: %s on line:" % message, lineNumber)
def _IndexError(message):
global COMPILE_ERROR
COMPILE_ERROR = True
print("IndexError: %s on line:" % message, lineNumber)
def _InstructionError(message):
global COMPILE_ERROR
COMPILE_ERROR = True
print("InstructionError: %s on line:" % message, lineNumber)
def load_include(filename):
with open(filename, "r") as f:
lines = f.readlines()
return lines
# for line in lines:
# line = line.split(";")[0] # filter out comments
# print(line)
@ -287,6 +386,9 @@ current_label = None
itterrator = 0
for line in lines:
# Remove leading and trailing whitespace
stripped_line = line.strip()
@ -296,10 +398,54 @@ for line in lines:
current_label = stripped_line[:-1] # Remove the colon
current_label = current_label.upper()
label_to_instructions[current_label] = [] # Initialize empty instruction list
elif stripped_line.startswith('%'):
# Get the command within the current line
command = ""
for char in stripped_line:
if char == "%":
continue
if char == " ": # Space
break
command += char
#print(command)
if command == "define": #! defines are handled in the preprocessor
pass
elif command == "include":
# Get value between quotes
inQuote = False
include_filepath = ""
for char in stripped_line:
if char == '"':
inQuote = not inQuote
elif inQuote:
include_filepath += char
if include_filepath == '':
continue
lines += ["\n"] + load_include(include_filepath)
elif stripped_line:
# It's an instruction; add it to the current label's list
if current_label is not None:
label_to_instructions[current_label].append(stripped_line)
itterrator+=1
@ -307,68 +453,111 @@ for line in lines:
# register letter to identifyer
registerDict = {'a':0x0,'b':0x1,'c':0x2,'d':0x3,'e':0x4,'f':0x5}
current_byte_offset = 0 # Tracks the current byte address
label_addresses = {} # Maps label names to their resolved byte addresses
for label in label_to_instructions:
label_addresses[label] = current_byte_offset
for line in label_to_instructions[label]:
line = line.strip().split(";")[0] # strip comments
line = line.rstrip(" ") # strip spaces at end
line = line.strip().split(";")[0] # Strip comments
line = line.rstrip(" ") # Strip spaces at end
line = line.replace(",", "") # Remove commas
line = line.split(" ") # Get each part of the instruction
line = line.replace(",", "") # stupid way to remove commas but it works
line = line.split(" ") # get each part of the instruction
line[0] = line[0].lower() # make instruction lowercase
line[0] = line[0].lower() # Make instruction lowercase
if line[0] == '':
continue
if line[0] in {"ldw","mov","add","sub","str","ldr","int","push","pop","jsr", "ret", 'xor', 'and', 'jmp', 'mul', 'div'}: # 3 byte instructions
if line[0] in {"ldw", "mov", "add", "sub", "str", "ldr", "int", "push", "pop", "jsr", "ret", 'xor', 'and', 'jmp', 'mul', 'div', 'ldb', 'stb'}: # 3 byte instructions
current_byte_offset += 3
elif line[0] in {'bne', 'beq', 'blt'}: # 4 byte instructions
elif line[0] in {'bne', 'beq', 'blt'}: # 4 byte instructions
current_byte_offset += 4
current_byte_offset = 0 # Tracks the current byte address
#print(label_addresses)
outputBytes = []
for label in label_to_instructions:
#print(label)
if label_addresses[label] != current_byte_offset:
if label_addresses[label] != current_byte_offset and not COMPILE_ERROR:
raise IndexError(f"address mismatch, expected {label_addresses[label]}, got {current_byte_offset}")
# Output the results
for line in label_to_instructions[label]:
line = line.strip().split(";")[0] # strip comments
line = line.rstrip(" ") # strip spaces at end
line = line.strip().split(";")[0] # Strip comments
line = line.rstrip(" ") # Strip trailing spaces
line = line.replace(",", "") # Remove commas
line = line.split(" ") # Split into instruction parts
line = line.replace(",", "") # stupid way to remove commas but it works
line = line.split(" ") # get each part of the instruction
line[0] = line[0].lower() # make instruction lowercase
if line[0] == '':
if not line[0]:
continue
line[0] = line[0].lower() # Normalize instruction to lowercase
# Regular instruction processing (already present in your code)
index = 0
for operator in line:
if operator in macro_definitions:
line[index] = macro_definitions[line[index]]
index += 1
#print(line)
#! Code to convert to bytes
bytes = []
try:
if line[0] == 'ldw': # Load immediate to register
# Handle 'db' directive for defining strings or raw bytes
if line[0] == 'db':
if len(line) < 3:
_InstructionError("Missing data for 'db' directive")
raw_data = " ".join(line[1:]).strip("'\"")
bytes = [ord(char) for char in raw_data] # Convert characters to ASCII values
bytes.append(0) # Null terminator
outputBytes += bytes
current_byte_offset += len(bytes)
continue
# Add 'ldb' instruction handling
elif line[0] == 'ldb': # Load byte to register
bytes.append(0x15) # Assuming 0x15 for 'ldb'
register = registerDict.get(line[1].lower(), -1)
if register >= 0 and register <= 5:
bytes.append(register)
else:
_ValueError("Invalid Register")
register = registerDict.get(line[2].lower(), -1)
if register >= 0 and register <= 5:
bytes.append(register)
else:
_ValueError("Invalid Register")
elif line[0] == 'stb': # Load byte to register
bytes.append(0x16) # Assuming 0x15 for 'ldb'
register = registerDict.get(line[1].lower(), -1)
if register >= 0 and register <= 5:
bytes.append(register)
else:
_ValueError("Invalid Register")
register = registerDict.get(line[2].lower(), -1)
if register >= 0 and register <= 5:
bytes.append(register)
else:
_ValueError("Invalid Register")
elif line[0] == 'ldw': # Load immediate to register
bytes.append(0x1) # byte for load immediate value
# set register ID:
register = registerDict.get(line[1].lower(),-1)
@ -571,7 +760,6 @@ for label in label_to_instructions:
elif line[0] == 'ret': # Load immediate to register
bytes.append(0xE)
# set register ID:
bytes.append(0x0) # padding
bytes.append(0x0) # padding
@ -692,6 +880,7 @@ for label in label_to_instructions:
else:
print(line)
_InstructionError("Unknown Instruction")
@ -699,6 +888,7 @@ for label in label_to_instructions:
except IndexError:
_IndexError("Maformed Instruction")
except ValueError:
print(line)
_ValueError("Unknown Error")
current_byte_offset += len(bytes)
@ -707,9 +897,18 @@ for label in label_to_instructions:
lineNumber+=1
outputBytes += bytes
print(outputBytes)
if not COMPILE_ERROR:
with open("program.py", "w") as f:
bytecode = []
for _, y in enumerate(outputBytes):
bytecode.append(str(y))
prg = "program = [" + ",".join(bytecode) + "]"
f.write(prg)
else:
print(f"Compilation Error")
print(f"This is most likely due to invalid macro, please check your code for typos ")

548
c-to-asm.py Normal file
View File

@ -0,0 +1,548 @@
import re
import os
from termcolor import colored
class Variable:
def __init__(self, name, address, var_type="int"):
self.name = name
self.address = address
self.type = var_type
class Compiler:
def __init__(self):
# 1024 bytes total: 0x000 to 0x3FF
self.data_ptr = 0x400
self.variables = {}
self.struct_definitions = {}
self.in_struct_def = False
self.current_struct_name = None
self.current_struct_fields = []
self.defines = {} # For #define macros
self.typedefs = {} # For typedef
self.label_counter = 0
self.block_stack = [] # For if/while blocks
def new_label(self, prefix):
lbl = f"{prefix}{self.label_counter}"
self.label_counter += 1
return lbl
def preprocess(self, filename):
lines = self._read_file_recursive(filename)
processed_lines = self._apply_defines(lines)
return processed_lines
def _read_file_recursive(self, filename, included_files=None):
if included_files is None:
included_files = set()
if filename in included_files:
# Prevent infinite recursion on includes
return []
included_files.add(filename)
result_lines = []
try:
with open(filename, "r") as f:
for line in f:
line_stripped = line.strip()
# #include "file"
inc_match = re.match(r'#include\s+"([^"]+)"', line_stripped)
if inc_match:
inc_file = inc_match.group(1)
included_content = self._read_file_recursive(inc_file, included_files)
result_lines.extend(included_content)
continue
# #define KEY VALUE
def_match = re.match(r'#define\s+([a-zA-Z_]\w*)\s+(.*)', line_stripped)
if def_match:
key = def_match.group(1)
value = def_match.group(2)
self.defines[key] = value
continue
# typedef oldtype newtype;
tmatch = re.match(r'typedef\s+([a-zA-Z_]\w*)\s+([a-zA-Z_]\w*)\s*;', line_stripped)
if tmatch:
oldt = tmatch.group(1)
newt = tmatch.group(2)
# Resolve oldt if it's also a typedef
oldt = self.apply_typedef(oldt)
self.typedefs[newt] = oldt
continue
result_lines.append(line)
except FileNotFoundError as e:
print(colored(f"{filename}:0: error: {e}", "red"))
return result_lines
def _apply_defines(self, lines):
token_pattern = re.compile(r'([A-Za-z0-9_]+)')
processed = []
for line in lines:
parts = token_pattern.split(line)
# parts: tokens and separators
for i, part in enumerate(parts):
if part in self.defines:
print(f"Replaced {part} with {self.defines[part]}")
part = self.defines[part]
parts[i] = part
new_line = "".join(parts)
processed.append(new_line)
return processed
def apply_typedef(self, t):
if t in self.typedefs:
return self.typedefs[t]
return t
def allocate_bytes(self, count):
start_addr = self.data_ptr - (count - 1)
if start_addr < 0x000:
raise Exception("Out of memory!")
self.data_ptr = start_addr - 1
return start_addr
def allocate_var(self, name, var_type="int"):
var_type = self.apply_typedef(var_type)
if name in self.variables:
return self.variables[name]
if var_type.startswith("struct:"):
sname = var_type.split(":")[1]
fields = self.struct_definitions[sname]
length = len(fields) # each 1 byte
start_addr = self.allocate_bytes(length)
var = Variable(name, start_addr, var_type)
self.variables[name] = var
return var
else:
start_addr = self.allocate_bytes(1)
var = Variable(name, start_addr, var_type)
self.variables[name] = var
return var
def allocate_array(self, name, length, var_type="int"):
var_type = self.apply_typedef(var_type)
arr_start = self.allocate_bytes(length)
var_addr = self.allocate_bytes(1)
var = Variable(name, var_addr, "array")
self.variables[name] = var
return var, arr_start
def store_string(self, string_value):
string_value = string_value.replace('\\n', '\n')
length = len(string_value) + 1
start_addr = self.allocate_bytes(length)
asm = []
current_addr = start_addr
for ch in string_value:
ascii_val = ord(ch)
asm.append(f"ldw a, {ascii_val}")
asm.append(f"str a, 0x{current_addr:X}")
current_addr += 1
asm.append("ldw a, 0")
asm.append(f"str a, 0x{current_addr:X}")
return asm, start_addr
def get_struct_field_offset(self, struct_type, field_name):
sname = struct_type.split(":")[1]
fields = self.struct_definitions[sname]
for i, (fname, ftype) in enumerate(fields):
if fname == field_name:
return i
raise Exception(f"Field {field_name} not found in {struct_type}")
def parse_condition(self, cond_str):
# cond_str like "a == b" or "a != b"
m = re.match(r'([a-zA-Z_]\w*)\s*(==|!=)\s*([a-zA-Z_]\w*)', cond_str.strip())
if not m:
raise Exception("Unsupported condition: " + cond_str)
var1, op, var2 = m.groups()
return var1, op, var2
def compile_condition(self, var1, op, var2):
asm = []
v1 = self.allocate_var(var1)
v2 = self.allocate_var(var2)
asm.append(f"ldr a, 0x{v1.address:X}")
asm.append(f"ldr b, 0x{v2.address:X}")
# a = a - b
asm.append("sub a, b")
return asm, op
def extract_comment(self, line):
comment_index = line.find('//')
if comment_index != -1:
code_part = line[:comment_index]
comment_part = line[comment_index+2:].strip()
return code_part, comment_part
return line, None
def compile_line(self, code_part):
line = code_part.strip()
asm = []
if self.in_struct_def:
if line.startswith("};"):
self.struct_definitions[self.current_struct_name] = self.current_struct_fields
self.in_struct_def = False
self.current_struct_name = None
self.current_struct_fields = []
return asm
mfield = re.match(r'int\s+([a-zA-Z_]\w*)\s*;', line)
if mfield:
fname = mfield.group(1)
ftype = "int"
self.current_struct_fields.append((fname, ftype))
return asm
# struct definition start
msd = re.match(r'struct\s+([a-zA-Z_]\w*)\s*\{', line)
if msd:
self.in_struct_def = True
self.current_struct_name = msd.group(1)
self.current_struct_fields = []
return asm
# struct var declaration
msv = re.match(r'struct\s+([a-zA-Z_]\w*)\s+([a-zA-Z_]\w*)\s*;', line)
if msv:
sname, varname = msv.groups()
var_type = "struct:" + sname
self.allocate_var(varname, var_type)
return asm
# if statement
mif = re.match(r'if\s*\(([^)]+)\)\s*\{', line)
if mif:
cond_str = mif.group(1)
var1, op, var2 = self.parse_condition(cond_str)
end_label = self.new_label("endif")
cond_code, cmp_op = self.compile_condition(var1, op, var2)
asm.extend(cond_code)
# if '==': jump if not zero a != 0
# if '!=': jump if zero a == 0
if cmp_op == '==':
asm.append("bne a, 0, " + end_label)
else:
asm.append("beq a, 0, " + end_label)
self.block_stack.append(('if', end_label))
return asm
# while statement
mwhile = re.match(r'while\s*\(([^)]+)\)\s*\{', line)
if mwhile:
cond_str = mwhile.group(1)
var1, op, var2 = self.parse_condition(cond_str)
start_label = self.new_label("whilestart")
end_label = self.new_label("whileend")
asm.append(start_label + ":")
cond_code, cmp_op = self.compile_condition(var1, op, var2)
asm.extend(cond_code)
if cmp_op == '==':
asm.append("bne a, 0, " + end_label)
else:
asm.append("beq a, 0, " + end_label)
self.block_stack.append(('while', start_label, end_label))
return asm
# end of block
if line == "}":
if not self.block_stack:
return asm
blk = self.block_stack.pop()
if blk[0] == 'if':
end_label = blk[1]
asm.append(end_label + ":")
elif blk[0] == 'while':
start_label = blk[1]
end_label = blk[2]
# jump back to start
asm.append(f"jmp {start_label}")
asm.append(end_label + ":")
return asm
# p.x = number;
m = re.match(r'([a-zA-Z_]\w*)\.([a-zA-Z_]\w*)\s*=\s*(\d+)\s*;', line)
if m:
varname, fieldname, value = m.groups()
value = int(value)
v = self.allocate_var(varname)
offset = self.get_struct_field_offset(v.type, fieldname)
asm.append(f"ldr a, 0x{v.address:X}")
if offset != 0:
asm.append(f"ldw b, {offset}")
asm.append("add a, b")
asm.append(f"ldw c, {value}")
asm.append("stb c, a")
return asm
# p.x = var + number;
m = re.match(r'([a-zA-Z_]\w*)\.([a-zA-Z_]\w*)\s*=\s*([a-zA-Z_]\w*)\s*\+\s*(\d+)\s*;', line)
if m:
varname, fieldname, srcvar, number = m.groups()
number = int(number)
v = self.allocate_var(varname)
offset = self.get_struct_field_offset(v.type, fieldname)
asm.append(f"ldr a, 0x{v.address:X}")
if offset != 0:
asm.append(f"ldw b, {offset}")
asm.append("add a, b")
v2 = self.allocate_var(srcvar)
asm.append(f"ldr c, 0x{v2.address:X}")
asm.append(f"ldw d, {number}")
asm.append("add c, d")
asm.append("stb c, a")
return asm
# p.x = srcvar;
m = re.match(r'([a-zA-Z_]\w*)\.([a-zA-Z_]\w*)\s*=\s*([a-zA-Z_]\w*)\s*;', line)
if m:
varname, fieldname, srcvar = m.groups()
v = self.allocate_var(varname)
offset = self.get_struct_field_offset(v.type, fieldname)
asm.append(f"ldr a, 0x{v.address:X}")
if offset != 0:
asm.append(f"ldw b, {offset}")
asm.append("add a, b")
v2 = self.allocate_var(srcvar)
asm.append(f"ldr c, 0x{v2.address:X}")
asm.append("stb c, a")
return asm
# x = p.x;
m = re.match(r'([a-zA-Z_]\w*)\s*=\s*([a-zA-Z_]\w*)\.([a-zA-Z_]\w*)\s*;', line)
if m:
dst, varname, fieldname = m.groups()
v = self.allocate_var(varname)
offset = self.get_struct_field_offset(v.type, fieldname)
vd = self.allocate_var(dst)
asm.append(f"ldr a, 0x{v.address:X}")
if offset != 0:
asm.append(f"ldw b, {offset}")
asm.append("add a, b")
asm.append("ldb c, a")
asm.append(f"str c, 0x{vd.address:X}")
return asm
# print_int(p.x);
m = re.match(r'print_int\(([a-zA-Z_]\w*)\.([a-zA-Z_]\w*)\)\s*;', line)
if m:
varname, fieldname = m.groups()
v = self.allocate_var(varname)
offset = self.get_struct_field_offset(v.type, fieldname)
asm.append(f"ldr a, 0x{v.address:X}")
if offset != 0:
asm.append(f"ldw b, {offset}")
asm.append("add a, b")
asm.append("ldb a, a")
asm.append("int 0x01")
return asm
# int arr[10];
m = re.match(r'int\s+([a-zA-Z_]\w*)\[(\d+)\]\s*;', line)
if m:
varname = m.group(1)
length = int(m.group(2))
arr_var, start_addr = self.allocate_array(varname, length)
asm.append(f"ldw a, 0x{start_addr:X}")
asm.append(f"str a, 0x{arr_var.address:X}")
return asm
# int x = number;
m = re.match(r'int\s+([a-zA-Z_]\w*)\s*=\s*(\d+)\s*;', line)
if m:
varname = m.group(1)
value = int(m.group(2))
var = self.allocate_var(varname, "int")
asm.append(f"ldw a, {value}")
asm.append(f"str a, 0x{var.address:X}")
return asm
# int y = x + number;
m = re.match(r'int\s+([a-zA-Z_]\w*)\s*=\s*([a-zA-Z_]\w*)\s*\+\s*(\d+)\s*;', line)
if m:
varname, var2, number = m.groups()
number = int(number)
v1 = self.allocate_var(varname, "int")
v2 = self.allocate_var(var2, "int")
asm.append(f"ldr a, 0x{v2.address:X}")
asm.append(f"ldw b, {number}")
asm.append("add a, b")
asm.append(f"str a, 0x{v1.address:X}")
return asm
# char *msg = "Hello\n";
m = re.match(r'char\s*\*\s*([a-zA-Z_]\w*)\s*=\s*"([^"]*)"\s*;', line)
if m:
varname, string_val = m.groups()
v = self.allocate_var(varname, "char*")
code, start_addr = self.store_string(string_val)
asm.extend(code)
asm.append(f"ldw a, 0x{start_addr:X}")
asm.append(f"str a, 0x{v.address:X}")
return asm
# var = number;
m = re.match(r'([a-zA-Z_]\w*)\s*=\s*(\d+)\s*;', line)
if m:
varname, value = m.groups()
value = int(value)
v = self.allocate_var(varname, "int")
asm.append(f"ldw a, {value}")
asm.append(f"str a, 0x{v.address:X}")
return asm
# var = var2 + number;
m = re.match(r'([a-zA-Z_]\w*)\s*=\s*([a-zA-Z_]\w*)\s*\+\s*(\d+)\s*;', line)
if m:
varname, var2, number = m.groups()
number = int(number)
v1 = self.allocate_var(varname, "int")
v2 = self.allocate_var(var2, "int")
asm.append(f"ldr a, 0x{v2.address:X}")
asm.append(f"ldw b, {number}")
asm.append("add a, b")
asm.append(f"str a, 0x{v1.address:X}")
return asm
# var[index] = number;
m = re.match(r'([a-zA-Z_]\w*)\[(\d+)\]\s*=\s*(\d+)\s*;', line)
if m:
arr, index, value = m.groups()
index = int(index)
value = int(value)
arr_var = self.allocate_var(arr)
asm.append(f"ldr a, 0x{arr_var.address:X}")
asm.append(f"ldw b, {index}")
asm.append("add a, b")
asm.append(f"ldw c, {value}")
asm.append("stb c, a")
return asm
# x = arr[index];
m = re.match(r'([a-zA-Z_]\w*)\s*=\s*([a-zA-Z_]\w*)\[(\d+)\]\s*;', line)
if m:
varname, arr, index = m.groups()
index = int(index)
v = self.allocate_var(varname, "int")
arr_var = self.allocate_var(arr)
asm.append(f"ldr a, 0x{arr_var.address:X}")
asm.append(f"ldw b, {index}")
asm.append("add a, b")
asm.append("ldb d, a")
asm.append(f"str d, 0x{v.address:X}")
return asm
# print_char(var);
m = re.match(r'print_char\(([a-zA-Z_]\w*)\)\s*;', line)
if m:
varname = m.group(1)
v = self.allocate_var(varname)
asm.append(f"ldr a, 0x{v.address:X}")
asm.append("int 0x00")
return asm
# print_char(arr[index]);
m = re.match(r'print_char\(([a-zA-Z_]\w*)\[(\d+)\]\)\s*;', line)
if m:
arr, index = m.groups()
index = int(index)
arr_var = self.allocate_var(arr)
asm.append(f"ldr a, 0x{arr_var.address:X}")
asm.append(f"ldw b, {index}")
asm.append("add a, b")
asm.append("ldb a, a")
asm.append("int 0x00")
return asm
# print_int(var);
m = re.match(r'print_int\(([a-zA-Z_]\w*)\)\s*;', line)
if m:
varname = m.group(1)
v = self.allocate_var(varname)
asm.append(f"ldr a, 0x{v.address:X}")
asm.append("int 0x01")
return asm
# print_string(var);
m = re.match(r'print_string\(([a-zA-Z_]\w*)\)\s*;', line)
if m:
varname = m.group(1)
v = self.allocate_var(varname, "char*")
asm.append("ldw d, 0")
asm.append(f"ldr b, 0x{v.address:X}")
asm.append("ldw c, 1")
asm.append("string_loop:")
asm.append("ldb a, b")
asm.append("beq a, d, string_end")
asm.append("int 0x00")
asm.append("add b, c")
asm.append("jmp string_loop")
asm.append("string_end:")
return asm
# return number;
m = re.match(r'return\s+(\d+)\s*;', line)
if m:
asm.append("int 0xFF")
return asm
# Unrecognized line or empty
return asm
def compile_c(self, c_code):
# First, parse everything to detect structs and typedef done in preprocess
all_lines = c_code.split('\n')
# struct definitions might appear outside main
for cline in all_lines:
self.compile_line(cline)
# Extract lines inside main
lines = []
in_main = False
for cline in all_lines:
cline = cline.rstrip()
if 'int main(' in cline:
in_main = True
continue
if in_main:
if cline.startswith('}'):
in_main = False
break
lines.append(cline)
asm = ["main:"]
for line in lines:
code_part, comment_part = self.extract_comment(line)
instructions = self.compile_line(code_part)
if instructions:
for i, instr in enumerate(instructions):
if i == 0 and comment_part:
asm.append(f" {instr} ; {comment_part}")
else:
asm.append(f" {instr}")
else:
if comment_part:
asm.append(f" ; {comment_part}")
return asm
if __name__ == "__main__":
compiler = Compiler()
preprocessed_lines = compiler.preprocess("main.c")
c_code = "\n".join(preprocessed_lines)
asm_code = compiler.compile_c(c_code)
with open("test.asm", "w") as out:
for line in asm_code:
out.write(line + "\n")

Binary file not shown.

View File

@ -1,9 +1,12 @@
; Initialize text mode
main:
ldw a, 1 ; Mode: 1 for text mode
ldw a, 0 ; Mode: 1 for text mode
ldw b, 800 ; Horizontal resolution
ldw c, 600 ; Vertical resolution
int 0x70 ; Initialize display
jsr test
ldw b, 0 ; Cursor position (character cell index)
ldw c, 0xFFFFFF ; White color
@ -25,22 +28,8 @@ main_loop:
; Render the character
int 0x72 ; Render the character (using the keycode from register 0x0 at position b)
; Write letter to disk at index ;push a
; Write letter to disk at index ;push b
; Write letter to disk at index ;push c
; Write letter to disk at index ;push d
; Write letter to disk at index ;
; Write letter to disk at index ;ldw a, 8 ; disk number
; Write letter to disk at index ;ldw b, 0 ; sector number
; Write letter to disk at index ;ldr c, 0xEE ; byte offset
; Write letter to disk at index ;ldr d, 0xEF ; value to write
; Write letter to disk at index ;
; Write letter to disk at index ;int 0x81 ; Write
; Write letter to disk at index ;
; Write letter to disk at index ;pop d
; Write letter to disk at index ;pop c
; Write letter to disk at index ;pop b
; Write letter to disk at index ;pop a
; Reset cursor to the top of the screen
jmp main_loop ; Jump back to the main loop
%include "std.asm"

12
main.c Normal file
View File

@ -0,0 +1,12 @@
int main()
{
char *msg = "Welcome!\n";
print_string(msg);
while (1) // Not implemented
{
}
return 0;
}