small-projects/lighting/ray-lighting.py

300 lines
9.5 KiB
Python
Raw Normal View History

2025-04-05 23:26:40 +00:00
import pygame
import sys
import math
import random
# -----------------------------
# Pygame and world initialization
# -----------------------------
pygame.init()
SCREEN_WIDTH, SCREEN_HEIGHT = 800, 600
BLOCK_SIZE = 40
screen = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT))
pygame.display.set_caption("2D Voxel Game with Advanced Debug Visualization")
clock = pygame.time.Clock()
font = pygame.font.Font(None, 20)
# -----------------------------
# Global debug options
# -----------------------------
debug_mode = False # Toggle full debug overlay (F3)
show_bvh = False # Toggle drawing BVH overlay (D)
num_rays = 360 * 2 # Rays cast for lighting
max_distance = 1000 # Maximum ray distance if nothing is hit
# Global counter for ray intersection tests
ray_intersect_count = 0
# -----------------------------
# Create a simple voxel world
# -----------------------------
# Build a grid of blocks (some cells are solid, some are empty)
def generate_blocks():
blocks = []
cols = SCREEN_WIDTH // BLOCK_SIZE
rows = SCREEN_HEIGHT // BLOCK_SIZE
for i in range(cols):
for j in range(rows):
# For demo purposes, randomly assign some blocks as solid (20% chance)
if random.random() < 0.2:
blocks.append(pygame.Rect(i * BLOCK_SIZE, j * BLOCK_SIZE, BLOCK_SIZE, BLOCK_SIZE))
return blocks
blocks = generate_blocks()
# -----------------------------
# BVH Data Structures and Build
# -----------------------------
# BVH Node: holds a bounding box (min_x, min_y, max_x, max_y) and either children or a solid block.
class BVHNode:
def __init__(self, bbox, left=None, right=None, block=None):
self.bbox = bbox # Tuple: (min_x, min_y, max_x, max_y)
self.left = left
self.right = right
self.block = block # For leaf nodes, store the actual block (pygame.Rect)
def rect_to_bbox(rect):
return (rect.left, rect.top, rect.right, rect.bottom)
def union_bbox(b1, b2):
x1 = min(b1[0], b2[0])
y1 = min(b1[1], b2[1])
x2 = max(b1[2], b2[2])
y2 = max(b1[3], b2[3])
return (x1, y1, x2, y2)
def build_bvh(block_list):
if not block_list:
return None
if len(block_list) == 1:
return BVHNode(rect_to_bbox(block_list[0]), block=block_list[0])
# Sort blocks by center x-coordinate (could also choose y or alternate)
block_list.sort(key=lambda rect: rect.centerx)
mid = len(block_list) // 2
left = build_bvh(block_list[:mid])
right = build_bvh(block_list[mid:])
if left and right:
bbox = union_bbox(left.bbox, right.bbox)
elif left:
bbox = left.bbox
else:
bbox = right.bbox
return BVHNode(bbox, left, right)
bvh_root = build_bvh(blocks)
# -----------------------------
# BVH Statistics Functions
# -----------------------------
def get_bvh_stats(node):
"""Return (node_count, depth) for the given BVH."""
if node is None:
return (0, 0)
if node.block is not None:
return (1, 1)
left_count, left_depth = get_bvh_stats(node.left)
right_count, right_depth = get_bvh_stats(node.right)
total = 1 + left_count + right_count
depth = 1 + max(left_depth, right_depth)
return (total, depth)
# -----------------------------
# Ray-AABB Intersection (Slab Method)
# -----------------------------
def ray_intersect_aabb(origin, direction, bbox):
# Increase global counter each time this function is called.
global ray_intersect_count
ray_intersect_count += 1
# bbox: (min_x, min_y, max_x, max_y)
tmin = -math.inf
tmax = math.inf
ox, oy = origin
dx, dy = direction
# X slab
if dx != 0:
tx1 = (bbox[0] - ox) / dx
tx2 = (bbox[2] - ox) / dx
tmin = max(tmin, min(tx1, tx2))
tmax = min(tmax, max(tx1, tx2))
else:
if not (bbox[0] <= ox <= bbox[2]):
return None
# Y slab
if dy != 0:
ty1 = (bbox[1] - oy) / dy
ty2 = (bbox[3] - oy) / dy
tmin = max(tmin, min(ty1, ty2))
tmax = min(tmax, max(ty1, ty2))
else:
if not (bbox[1] <= oy <= bbox[3]):
return None
if tmax >= tmin and tmax >= 0:
return tmin if tmin >= 0 else tmax
return None
# -----------------------------
# BVH Ray Casting
# -----------------------------
def ray_cast_bvh(node, origin, direction):
if node is None:
return None, None
# Test if ray intersects node's bounding box.
t_bbox = ray_intersect_aabb(origin, direction, node.bbox)
if t_bbox is None:
return None, None
# If leaf node, test collision with the block.
if node.block is not None:
t_hit = ray_intersect_aabb(origin, direction, rect_to_bbox(node.block))
if t_hit is not None:
return t_hit, node.block
else:
return None, None
# Otherwise, recursively test both children.
t_left, block_left = ray_cast_bvh(node.left, origin, direction)
t_right, block_right = ray_cast_bvh(node.right, origin, direction)
if t_left is not None and t_right is not None:
if t_left < t_right:
return t_left, block_left
else:
return t_right, block_right
elif t_left is not None:
return t_left, block_left
elif t_right is not None:
return t_right, block_right
return None, None
# -----------------------------
# Ray-Based Lighting Function
# -----------------------------
# Cast many rays from the light source (controlled by the mouse) and collect hit points.
light_source = (SCREEN_WIDTH // 2, SCREEN_HEIGHT // 2)
def cast_light_rays(light_pos):
points = []
# Cast one ray per degree
for angle in range(0, 360, num_rays // num_rays):
rad = math.radians(angle)
direction = (math.cos(rad), math.sin(rad))
t, _ = ray_cast_bvh(bvh_root, light_pos, direction)
if t is None:
t = max_distance
hit_x = light_pos[0] + direction[0] * t
hit_y = light_pos[1] + direction[1] * t
points.append((hit_x, hit_y))
return points
# -----------------------------
# Advanced Debug Menu Drawing
# -----------------------------
def draw_debug_menu(surface, fps):
# Gather BVH statistics.
bvh_node_count, bvh_depth = get_bvh_stats(bvh_root)
# Prepare debug information lines.
debug_lines = [
"DEBUG MODE ACTIVE",
f"FPS: {fps:.1f}",
f"Blocks: {len(blocks)}",
f"BVH Nodes: {bvh_node_count}",
f"BVH Depth: {bvh_depth}",
f"Light Source: {light_source}",
f"Rays Cast: {num_rays}",
f"Ray Intersection Tests (this frame): {ray_intersect_count}",
f"Avg Tests per Ray: {ray_intersect_count / num_rays:.2f}",
"Toggles: F3 - Debug, D - BVH overlay, R - Regenerate World"
]
# Create a semi-transparent panel background.
panel_width = 300
panel_height = (len(debug_lines) * 22) + 10
panel = pygame.Surface((panel_width, panel_height))
panel.set_alpha(180)
panel.fill((0, 0, 0))
# Render text lines onto the panel.
y_offset = 5
for line in debug_lines:
text_surf = font.render(line, True, (255, 255, 255))
panel.blit(text_surf, (5, y_offset))
y_offset += 22
# Blit the debug panel onto the main surface.
surface.blit(panel, (10, 10))
# -----------------------------
# BVH Visualization (recursive drawing)
# -----------------------------
def draw_bvh(node, surface):
if node is None:
return
x, y, x2, y2 = node.bbox
rect = pygame.Rect(x, y, x2 - x, y2 - y)
# Draw leaf nodes in green; internal nodes in red.
color = (0, 255, 0) if node.block is not None else (255, 0, 0)
pygame.draw.rect(surface, color, rect, 1)
draw_bvh(node.left, surface)
draw_bvh(node.right, surface)
# -----------------------------
# Main Game Loop
# -----------------------------
running = True
while running:
# Reset ray intersection counter each frame.
ray_intersect_count = 0
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
elif event.type == pygame.KEYDOWN:
# Toggle full debug mode with F3.
if event.key == pygame.K_F3:
debug_mode = not debug_mode
# Toggle BVH overlay with D.
elif event.key == pygame.K_d:
show_bvh = not show_bvh
# Regenerate the world and rebuild the BVH with R.
elif event.key == pygame.K_r:
blocks = generate_blocks()
bvh_root = build_bvh(blocks)
# Update light source with mouse motion.
elif event.type == pygame.MOUSEMOTION:
light_source = event.pos
# Clear screen.
screen.fill((30, 30, 30))
# Draw voxel blocks (solid cells).
for block in blocks:
pygame.draw.rect(screen, (100, 100, 100), block)
# Optionally draw the BVH overlay.
if show_bvh and bvh_root:
draw_bvh(bvh_root, screen)
# Cast light rays from the light source.
light_polygon = cast_light_rays(light_source)
# Create a separate surface for lighting effects.
light_surface = pygame.Surface((SCREEN_WIDTH, SCREEN_HEIGHT))
light_surface.fill((0, 0, 0))
pygame.draw.polygon(light_surface, (255, 255, 200), light_polygon)
light_surface.set_alpha(180)
screen.blit(light_surface, (0, 0), special_flags=pygame.BLEND_ADD)
# Draw the light source.
pygame.draw.circle(screen, (255, 255, 0), light_source, 5)
# Draw advanced debug overlay if debug mode is enabled.
if debug_mode:
fps = clock.get_fps()
draw_debug_menu(screen, fps)
pygame.display.flip()
clock.tick(60)
pygame.quit()
sys.exit()