253 lines
8.0 KiB
Python
253 lines
8.0 KiB
Python
|
import pygame
|
||
|
import sys
|
||
|
import math
|
||
|
import random
|
||
|
|
||
|
# -----------------------------
|
||
|
# Pygame and world initialization
|
||
|
# -----------------------------
|
||
|
pygame.init()
|
||
|
SCREEN_WIDTH, SCREEN_HEIGHT = 800, 600
|
||
|
BLOCK_SIZE = 40
|
||
|
screen = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT))
|
||
|
pygame.display.set_caption("2D Voxel Game with Collision Pixel Lighting (No Bouncing)")
|
||
|
clock = pygame.time.Clock()
|
||
|
font = pygame.font.Font(None, 20)
|
||
|
|
||
|
# -----------------------------
|
||
|
# Global Options
|
||
|
# -----------------------------
|
||
|
debug_mode = False # Toggle full debug overlay (F3)
|
||
|
num_rays = 360 * 2 # Number of primary rays to cast
|
||
|
max_distance = 1000 # Maximum distance for a ray if nothing is hit
|
||
|
# Global counter for ray intersection tests (resets every frame)
|
||
|
ray_intersect_count = 0
|
||
|
|
||
|
# -----------------------------
|
||
|
# Voxel World Generation (each block gets a random color)
|
||
|
# -----------------------------
|
||
|
def generate_blocks():
|
||
|
blocks = []
|
||
|
cols = SCREEN_WIDTH // BLOCK_SIZE
|
||
|
rows = SCREEN_HEIGHT // BLOCK_SIZE
|
||
|
for i in range(cols):
|
||
|
for j in range(rows):
|
||
|
# 20% chance that this grid cell is a solid block.
|
||
|
if random.random() < 0.2:
|
||
|
rect = pygame.Rect(i * BLOCK_SIZE, j * BLOCK_SIZE, BLOCK_SIZE, BLOCK_SIZE)
|
||
|
color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255))
|
||
|
# Store block as tuple: (pygame.Rect, color)
|
||
|
blocks.append((rect, color))
|
||
|
return blocks
|
||
|
|
||
|
blocks = generate_blocks()
|
||
|
|
||
|
# -----------------------------
|
||
|
# BVH Data Structures and Build
|
||
|
# -----------------------------
|
||
|
class BVHNode:
|
||
|
def __init__(self, bbox, left=None, right=None, block=None):
|
||
|
self.bbox = bbox # (min_x, min_y, max_x, max_y)
|
||
|
self.left = left
|
||
|
self.right = right
|
||
|
self.block = block # For leaf nodes, store the block (tuple: (pygame.Rect, color))
|
||
|
|
||
|
def rect_to_bbox(block):
|
||
|
rect = block[0] if isinstance(block, tuple) else block
|
||
|
return (rect.left, rect.top, rect.right, rect.bottom)
|
||
|
|
||
|
def union_bbox(b1, b2):
|
||
|
x1 = min(b1[0], b2[0])
|
||
|
y1 = min(b1[1], b2[1])
|
||
|
x2 = max(b1[2], b2[2])
|
||
|
y2 = max(b1[3], b2[3])
|
||
|
return (x1, y1, x2, y2)
|
||
|
|
||
|
def build_bvh(block_list):
|
||
|
if not block_list:
|
||
|
return None
|
||
|
if len(block_list) == 1:
|
||
|
return BVHNode(rect_to_bbox(block_list[0]), block=block_list[0])
|
||
|
# Sort blocks by center x-coordinate
|
||
|
block_list.sort(key=lambda block: block[0].centerx)
|
||
|
mid = len(block_list) // 2
|
||
|
left = build_bvh(block_list[:mid])
|
||
|
right = build_bvh(block_list[mid:])
|
||
|
if left and right:
|
||
|
bbox = union_bbox(left.bbox, right.bbox)
|
||
|
elif left:
|
||
|
bbox = left.bbox
|
||
|
else:
|
||
|
bbox = right.bbox
|
||
|
return BVHNode(bbox, left, right)
|
||
|
|
||
|
bvh_root = build_bvh(blocks)
|
||
|
|
||
|
# -----------------------------
|
||
|
# BVH Statistics Functions
|
||
|
# -----------------------------
|
||
|
def get_bvh_stats(node):
|
||
|
if node is None:
|
||
|
return (0, 0)
|
||
|
if node.block is not None:
|
||
|
return (1, 1)
|
||
|
left_count, left_depth = get_bvh_stats(node.left)
|
||
|
right_count, right_depth = get_bvh_stats(node.right)
|
||
|
total = 1 + left_count + right_count
|
||
|
depth = 1 + max(left_depth, right_depth)
|
||
|
return (total, depth)
|
||
|
|
||
|
# -----------------------------
|
||
|
# Ray-AABB Intersection (Slab Method)
|
||
|
# -----------------------------
|
||
|
def ray_intersect_aabb(origin, direction, bbox):
|
||
|
global ray_intersect_count
|
||
|
ray_intersect_count += 1
|
||
|
|
||
|
tmin = -math.inf
|
||
|
tmax = math.inf
|
||
|
ox, oy = origin
|
||
|
dx, dy = direction
|
||
|
|
||
|
# X slab
|
||
|
if dx != 0:
|
||
|
tx1 = (bbox[0] - ox) / dx
|
||
|
tx2 = (bbox[2] - ox) / dx
|
||
|
tmin = max(tmin, min(tx1, tx2))
|
||
|
tmax = min(tmax, max(tx1, tx2))
|
||
|
else:
|
||
|
if not (bbox[0] <= ox <= bbox[2]):
|
||
|
return None
|
||
|
|
||
|
# Y slab
|
||
|
if dy != 0:
|
||
|
ty1 = (bbox[1] - oy) / dy
|
||
|
ty2 = (bbox[3] - oy) / dy
|
||
|
tmin = max(tmin, min(ty1, ty2))
|
||
|
tmax = min(tmax, max(ty1, ty2))
|
||
|
else:
|
||
|
if not (bbox[1] <= oy <= bbox[3]):
|
||
|
return None
|
||
|
|
||
|
if tmax >= tmin and tmax >= 0:
|
||
|
return tmin if tmin >= 0 else tmax
|
||
|
return None
|
||
|
|
||
|
# -----------------------------
|
||
|
# BVH Ray Casting
|
||
|
# -----------------------------
|
||
|
def ray_cast_bvh(node, origin, direction):
|
||
|
if node is None:
|
||
|
return None, None
|
||
|
t_bbox = ray_intersect_aabb(origin, direction, node.bbox)
|
||
|
if t_bbox is None:
|
||
|
return None, None
|
||
|
|
||
|
if node.block is not None:
|
||
|
t_hit = ray_intersect_aabb(origin, direction, rect_to_bbox(node.block))
|
||
|
if t_hit is not None:
|
||
|
return t_hit, node.block
|
||
|
else:
|
||
|
return None, None
|
||
|
|
||
|
t_left, block_left = ray_cast_bvh(node.left, origin, direction)
|
||
|
t_right, block_right = ray_cast_bvh(node.right, origin, direction)
|
||
|
|
||
|
if t_left is not None and t_right is not None:
|
||
|
return (t_left, block_left) if t_left < t_right else (t_right, block_right)
|
||
|
elif t_left is not None:
|
||
|
return t_left, block_left
|
||
|
elif t_right is not None:
|
||
|
return t_right, block_right
|
||
|
return None, None
|
||
|
|
||
|
# -----------------------------
|
||
|
# Single Ray Casting (No Bouncing)
|
||
|
# -----------------------------
|
||
|
def cast_ray_single(origin, direction):
|
||
|
"""
|
||
|
Cast a single ray from origin in the given direction.
|
||
|
If the ray collides with a block within max_distance, return (hit_point, block_color).
|
||
|
Otherwise, return None.
|
||
|
"""
|
||
|
t, hit_block = ray_cast_bvh(bvh_root, origin, direction)
|
||
|
if t is None or t > max_distance:
|
||
|
return None
|
||
|
hit_point = (origin[0] + direction[0] * t,
|
||
|
origin[1] + direction[1] * t)
|
||
|
block_color = hit_block[1] if isinstance(hit_block, tuple) else (255, 255, 255)
|
||
|
return (hit_point, block_color)
|
||
|
|
||
|
# -----------------------------
|
||
|
# Advanced Debug Menu (No Background)
|
||
|
# -----------------------------
|
||
|
def draw_debug_menu(surface, fps):
|
||
|
bvh_node_count, bvh_depth = get_bvh_stats(bvh_root)
|
||
|
debug_lines = [
|
||
|
"DEBUG MODE ACTIVE",
|
||
|
f"FPS: {fps:.1f}",
|
||
|
f"Blocks: {len(blocks)}",
|
||
|
f"BVH Nodes: {bvh_node_count}",
|
||
|
f"BVH Depth: {bvh_depth}",
|
||
|
f"Light Source: {light_source}",
|
||
|
f"Rays Cast: {num_rays}",
|
||
|
f"Ray Intersection Tests (this frame): {ray_intersect_count}",
|
||
|
f"Avg Tests per Ray: {ray_intersect_count / num_rays:.2f}",
|
||
|
"Toggles: F3 - Debug, R - Regenerate World"
|
||
|
]
|
||
|
y_offset = 10
|
||
|
for line in debug_lines:
|
||
|
text_surf = font.render(line, True, (255, 255, 255))
|
||
|
surface.blit(text_surf, (10, y_offset))
|
||
|
y_offset += text_surf.get_height() + 2
|
||
|
|
||
|
# -----------------------------
|
||
|
# Main Game Loop
|
||
|
# -----------------------------
|
||
|
light_source = (SCREEN_WIDTH // 2, SCREEN_HEIGHT // 2)
|
||
|
|
||
|
running = True
|
||
|
while running:
|
||
|
ray_intersect_count = 0 # Reset each frame
|
||
|
|
||
|
for event in pygame.event.get():
|
||
|
if event.type == pygame.QUIT:
|
||
|
running = False
|
||
|
elif event.type == pygame.KEYDOWN:
|
||
|
if event.key == pygame.K_F3:
|
||
|
debug_mode = not debug_mode
|
||
|
elif event.key == pygame.K_r:
|
||
|
blocks = generate_blocks()
|
||
|
bvh_root = build_bvh(blocks)
|
||
|
elif event.type == pygame.MOUSEMOTION:
|
||
|
light_source = event.pos
|
||
|
|
||
|
screen.fill((30, 30, 30))
|
||
|
|
||
|
# Draw voxel blocks in their random colors.
|
||
|
# for block in blocks:
|
||
|
# pygame.draw.rect(screen, block[1], block[0])
|
||
|
|
||
|
# For each ray, cast once and mark the collision point with the block's color.
|
||
|
for angle in range(0, 360, max(1, 360 // num_rays)):
|
||
|
rad = math.radians(angle)
|
||
|
direction = (math.cos(rad), math.sin(rad))
|
||
|
result = cast_ray_single(light_source, direction)
|
||
|
if result is not None:
|
||
|
hit_point, hit_color = result
|
||
|
# Draw a small circle (pixel) at the collision point.
|
||
|
pygame.draw.circle(screen, hit_color, (int(hit_point[0]), int(hit_point[1])), 3)
|
||
|
|
||
|
# Draw the light source.
|
||
|
pygame.draw.circle(screen, (255, 255, 0), light_source, 5)
|
||
|
|
||
|
if debug_mode:
|
||
|
fps = clock.get_fps()
|
||
|
draw_debug_menu(screen, fps)
|
||
|
|
||
|
pygame.display.flip()
|
||
|
clock.tick(60)
|
||
|
|
||
|
pygame.quit()
|
||
|
sys.exit()
|