diff --git a/Object-Recognision/coco.names b/Object-Recognision/coco.names new file mode 100644 index 0000000..ca76c80 --- /dev/null +++ b/Object-Recognision/coco.names @@ -0,0 +1,80 @@ +person +bicycle +car +motorbike +aeroplane +bus +train +truck +boat +traffic light +fire hydrant +stop sign +parking meter +bench +bird +cat +dog +horse +sheep +cow +elephant +bear +zebra +giraffe +backpack +umbrella +handbag +tie +suitcase +frisbee +skis +snowboard +sports ball +kite +baseball bat +baseball glove +skateboard +surfboard +tennis racket +bottle +wine glass +cup +fork +knife +spoon +bowl +banana +apple +sandwich +orange +broccoli +carrot +hot dog +pizza +donut +cake +chair +sofa +pottedplant +bed +diningtable +toilet +tvmonitor +laptop +mouse +remote +keyboard +cell phone +microwave +oven +toaster +sink +refrigerator +book +clock +vase +scissors +teddy bear +hair drier +toothbrush diff --git a/Object-Recognision/main.py b/Object-Recognision/main.py new file mode 100644 index 0000000..6843b92 --- /dev/null +++ b/Object-Recognision/main.py @@ -0,0 +1,140 @@ +import cv2 +import numpy as np +import time + +# ---------------------------- +# Configuration and Setup +# ---------------------------- + +# Paths to the YOLO files (update these if your files are in a different directory) +config_path = './yolov3.cfg' +weights_path = './yolov3.weights' +names_path = './coco.names' + +# Load class names from coco.names file +with open(names_path, 'r') as f: + classes = [line.strip() for line in f.readlines()] + +# Set up the neural network +net = cv2.dnn.readNetFromDarknet(config_path, weights_path) +# Optionally, set preferable backend and target to improve speed (e.g., use OpenCV's CUDA if available) +net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV) +net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU) # Change to DNN_TARGET_CUDA if available + +# Get all layer names from the network +layer_names = net.getLayerNames() + +# Use .flatten() so that we always work with a 1D array of indices. +output_layers = [layer_names[i - 1] for i in net.getUnconnectedOutLayers().flatten()] + + +# Confidence and Non-max suppression thresholds +conf_threshold = 0.5 # Minimum probability to filter weak detections +nms_threshold = 0.4 # Non-maximum suppression threshold + +# Colors for each class for bounding boxes (for visualization) +np.random.seed(42) +colors = np.random.randint(0, 255, size=(len(classes), 3), dtype='uint8') + + +# ---------------------------- +# Object Detection Function +# ---------------------------- +def detect_objects(frame): + """ + Process a frame to detect objects using YOLO. + Returns bounding boxes, confidences, and class IDs. + """ + height, width = frame.shape[:2] + # Create a blob from the input frame and perform a forward pass + blob = cv2.dnn.blobFromImage(frame, scalefactor=1/255.0, size=(416, 416), + swapRB=True, crop=False) + net.setInput(blob) + # Inference; YOLO returns predictions with shape (N, 85) for each detected object + start = time.time() + detections = net.forward(output_layers) + end = time.time() + + # Uncomment to print inference time for debugging + # print(f"Inference time: {end - start:.2f} seconds") + + boxes = [] + confidences = [] + class_ids = [] + + # Process each output layer's detections + for output in detections: + for detection in output: + # detection[0:4] are center_x, center_y, width and height; detection[5:] are class probabilities + scores = detection[5:] + class_id = np.argmax(scores) + confidence = scores[class_id] + if confidence > conf_threshold: + # Scale bounding box coordinates back to the size of the image + center_x = int(detection[0] * width) + center_y = int(detection[1] * height) + w = int(detection[2] * width) + h = int(detection[3] * height) + + # Calculate the top-left coordinate of the bounding box + x = int(center_x - w / 2) + y = int(center_y - h / 2) + + boxes.append([x, y, w, h]) + confidences.append(float(confidence)) + class_ids.append(class_id) + + # Apply non-max suppression to remove overlapping boxes + indices = cv2.dnn.NMSBoxes(boxes, confidences, conf_threshold, nms_threshold) + final_boxes = [] + final_confidences = [] + final_class_ids = [] + if len(indices) > 0: + for i in indices.flatten(): + final_boxes.append(boxes[i]) + final_confidences.append(confidences[i]) + final_class_ids.append(class_ids[i]) + + return final_boxes, final_confidences, final_class_ids + + +# ---------------------------- +# Main Function: Real-Time Object Detection +# ---------------------------- +def main(): + cap = cv2.VideoCapture(0) # Start the webcam + if not cap.isOpened(): + print("Error: Could not open webcam.") + return + + while True: + ret, frame = cap.read() + if not ret: + print("Failed to grab a frame.") + break + + # Detect objects in the frame + boxes, confidences, class_ids = detect_objects(frame) + + # Draw bounding boxes and labels on the frame + for i, box in enumerate(boxes): + x, y, w, h = box + color = [int(c) for c in colors[class_ids[i]]] + label = f"{classes[class_ids[i]]}: {confidences[i]:.2f}" + cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2) + cv2.putText(frame, label, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, + 0.5, color, 2) + + # Display the frame + cv2.imshow("Real-Time Object Detection", frame) + + # Exit on pressing 'q' + if cv2.waitKey(1) & 0xFF == ord('q'): + break + + cap.release() + cv2.destroyAllWindows() + + +if __name__ == "__main__": + main() diff --git a/Object-Recognision/yolov3.cfg b/Object-Recognision/yolov3.cfg new file mode 100644 index 0000000..938ffff --- /dev/null +++ b/Object-Recognision/yolov3.cfg @@ -0,0 +1,789 @@ +[net] +# Testing +# batch=1 +# subdivisions=1 +# Training +batch=64 +subdivisions=16 +width=608 +height=608 +channels=3 +momentum=0.9 +decay=0.0005 +angle=0 +saturation = 1.5 +exposure = 1.5 +hue=.1 + +learning_rate=0.001 +burn_in=1000 +max_batches = 500200 +policy=steps +steps=400000,450000 +scales=.1,.1 + +[convolutional] +batch_normalize=1 +filters=32 +size=3 +stride=1 +pad=1 +activation=leaky + +# Downsample + +[convolutional] +batch_normalize=1 +filters=64 +size=3 +stride=2 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=32 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=64 +size=3 +stride=1 +pad=1 +activation=leaky + +[shortcut] +from=-3 +activation=linear + +# Downsample + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=2 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=64 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=1 +pad=1 +activation=leaky + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=64 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=1 +pad=1 +activation=leaky + +[shortcut] +from=-3 +activation=linear + +# Downsample + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=2 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=leaky + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=leaky + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=leaky + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=leaky + +[shortcut] +from=-3 +activation=linear + + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=leaky + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=leaky + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=leaky + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=leaky + +[shortcut] +from=-3 +activation=linear + +# Downsample + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=2 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[shortcut] +from=-3 +activation=linear + + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[shortcut] +from=-3 +activation=linear + + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[shortcut] +from=-3 +activation=linear + + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[shortcut] +from=-3 +activation=linear + + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[shortcut] +from=-3 +activation=linear + + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[shortcut] +from=-3 +activation=linear + +# Downsample + +[convolutional] +batch_normalize=1 +filters=1024 +size=3 +stride=2 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=1024 +size=3 +stride=1 +pad=1 +activation=leaky + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=1024 +size=3 +stride=1 +pad=1 +activation=leaky + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=1024 +size=3 +stride=1 +pad=1 +activation=leaky + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=1024 +size=3 +stride=1 +pad=1 +activation=leaky + +[shortcut] +from=-3 +activation=linear + +###################### + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[convolutional] +size=1 +stride=1 +pad=1 +filters=255 +activation=linear + + +[yolo] +mask = 6,7,8 +anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 +classes=80 +num=9 +jitter=.3 +ignore_thresh = .7 +truth_thresh = 1 +random=1 + + +[route] +layers = -4 + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[upsample] +stride=2 + +[route] +layers = -1, 61 + + + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=512 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=512 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=512 +activation=leaky + +[convolutional] +size=1 +stride=1 +pad=1 +filters=255 +activation=linear + + +[yolo] +mask = 3,4,5 +anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 +classes=80 +num=9 +jitter=.3 +ignore_thresh = .7 +truth_thresh = 1 +random=1 + + + +[route] +layers = -4 + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=leaky + +[upsample] +stride=2 + +[route] +layers = -1, 36 + + + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=256 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=256 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=256 +activation=leaky + +[convolutional] +size=1 +stride=1 +pad=1 +filters=255 +activation=linear + + +[yolo] +mask = 0,1,2 +anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 +classes=80 +num=9 +jitter=.3 +ignore_thresh = .7 +truth_thresh = 1 +random=1 +