small-projects/physicaly-based-renderer/main.cpp
2025-04-09 10:49:47 -05:00

1048 lines
41 KiB
C++

// main.cpp
//
// A physically based renderer that demonstrates height mapping via parallax,
// improved lighting (point & directional lights), and renders a skybox for background.
// It uses procedural spheres and a plane. Materials (including height maps) can be loaded
// and saved via YAML (using yaml-cpp) and are editable via ImGui.
//
// Compile (on Linux):
// g++ main.cpp -lglfw -lGLEW -lGL -ldl -limgui -lyaml-cpp -o pbr_renderer
//
// Adjust library paths and names as needed.
#include <GL/glew.h>
#include <GLFW/glfw3.h>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <fstream>
#include <iostream>
#include <vector>
#include <cmath>
#include <cstring>
#include <string>
#include <sstream>
// ImGui includes.
#include "imgui.h"
#include "imgui_internal.h" // For IM_PI
#include "imgui_impl_glfw.h"
#include "imgui_impl_opengl3.h"
// stb_image for texture loading.
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
// yaml-cpp for YAML material loading/saving.
#include <yaml-cpp/yaml.h>
// ------------------------------------------
// Shader sources
// ------------------------------------------
// Vertex Shader (common to objects)
const char* vertexShaderSource = R"(
#version 330 core
layout (location = 0) in vec3 aPos; // position
layout (location = 1) in vec3 aNormal; // normal
layout (location = 2) in vec2 aTexCoords; // texture coordinates
layout (location = 3) in vec3 aTangent; // tangent
out vec3 WorldPos;
out vec3 Normal;
out vec2 TexCoords;
out vec3 Tangent;
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
void main(){
WorldPos = vec3(model * vec4(aPos, 1.0));
Normal = mat3(transpose(inverse(model))) * aNormal;
Tangent = mat3(model) * aTangent; // simple transform (ignore scale issues)
TexCoords = aTexCoords;
gl_Position = projection * view * vec4(WorldPos, 1.0);
}
)";
// Fragment Shader with parallax (height) mapping and two light types.
const char* fragmentShaderSource = R"(#version 330 core
out vec4 FragColor;
in vec3 WorldPos;
in vec3 Normal;
in vec2 TexCoords;
in vec3 Tangent;
uniform vec3 camPos;
// Base material uniforms.
uniform vec3 albedo;
uniform float metallic;
uniform float roughness;
uniform float ao;
// Texture samplers & usage flags.
uniform bool useAlbedoMap;
uniform bool useMetallicMap;
uniform bool useRoughnessMap;
uniform bool useAOMap;
uniform bool useNormalMap;
uniform bool useHeightMap; // Height map flag
uniform sampler2D albedoMap;
uniform sampler2D metallicMap;
uniform sampler2D roughnessMap;
uniform sampler2D aoMap;
uniform sampler2D normalMap;
uniform sampler2D heightMap; // Height map sampler
// Parallax mapping scale factor.
uniform float parallaxScale;
// Use ImGui's internal PI constant.
uniform float PI;
// Point light uniforms.
uniform vec3 pointLightPos;
uniform vec3 pointLightColor;
// Directional light uniforms.
uniform bool useDirLight;
uniform vec3 dirLightDir;
uniform vec3 dirLightColor;
// NEW: Environment reflection uniforms.
uniform samplerCube envMap;
uniform float envReflectionIntensity;
//
// Helper functions for PBR
//
vec3 fresnelSchlick(float cosTheta, vec3 F0) {
return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
}
float DistributionGGX(vec3 N, vec3 H, float roughness) {
float a = roughness * roughness;
float a2 = a * a;
float NdotH = max(dot(N, H), 0.0);
float NdotH2 = NdotH * NdotH;
float denom = (NdotH2 * (a2 - 1.0) + 1.0);
denom = PI * denom * denom;
return a2 / max(denom, 0.001);
}
float GeometrySchlickGGX(float NdotV, float roughness) {
float r = roughness + 1.0;
float k = (r * r) / 8.0;
return NdotV / (NdotV * (1.0 - k) + k);
}
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness) {
float NdotV = max(dot(N, V), 0.0);
float NdotL = max(dot(N, L), 0.0);
float ggx1 = GeometrySchlickGGX(NdotV, roughness);
float ggx2 = GeometrySchlickGGX(NdotL, roughness);
return ggx1 * ggx2;
}
void main(){
// Start with the input geometry normal.
vec3 Nn = normalize(Normal);
// Compute the TBN matrix if using normal or height maps.
mat3 TBN = mat3(1.0);
if (useNormalMap || useHeightMap) {
vec3 T = normalize(Tangent);
vec3 B = normalize(cross(Normal, T));
TBN = mat3(T, B, Normal);
}
// Compute modified texture coordinates (parallax mapping) if height mapping is enabled.
vec2 texCoordsModified = TexCoords;
if (useHeightMap) {
// Transform view direction into tangent space.
vec3 viewDirT = normalize(TBN * (camPos - WorldPos));
// Sample the height value.
float heightValue = texture(heightMap, TexCoords).r;
// Offset the texture coordinates.
texCoordsModified = TexCoords - viewDirT.xy * (heightValue * parallaxScale);
}
// Apply normal mapping if enabled.
if (useNormalMap) {
vec3 tangentNormal = texture(normalMap, texCoordsModified).rgb;
tangentNormal = tangentNormal * 2.0 - 1.0;
Nn = normalize(TBN * tangentNormal);
}
vec3 V = normalize(camPos - WorldPos);
// Sample material textures using modified texture coordinates.
vec3 albedoValue = albedo;
if (useAlbedoMap)
albedoValue = texture(albedoMap, texCoordsModified).rgb;
float metallicValue = metallic;
if (useMetallicMap)
metallicValue = texture(metallicMap, texCoordsModified).r;
float roughnessValue = roughness;
if (useRoughnessMap)
roughnessValue = texture(roughnessMap, texCoordsModified).r;
float aoValue = ao;
if (useAOMap)
aoValue = texture(aoMap, texCoordsModified).r;
// Calculate reflectance at normal incidence.
vec3 F0 = vec3(0.04);
F0 = mix(F0, albedoValue, metallicValue);
// --- Compute point light contribution ---
vec3 Lp = normalize(pointLightPos - WorldPos);
vec3 Hp = normalize(V + Lp);
float NDFp = DistributionGGX(Nn, Hp, roughnessValue);
float Gp = GeometrySmith(Nn, V, Lp, roughnessValue);
vec3 Fp = fresnelSchlick(max(dot(Hp, V), 0.0), F0);
vec3 numeratorP = NDFp * Gp * Fp;
float denominatorP = 4.0 * max(dot(Nn, V), 0.0) * max(dot(Nn, Lp), 0.0) + 0.001;
vec3 specularP = numeratorP / denominatorP;
vec3 kS = Fp;
vec3 kD = vec3(1.0) - kS;
kD *= 1.0 - metallicValue;
float NdotLp = max(dot(Nn, Lp), 0.0);
vec3 irradianceP = pointLightColor * NdotLp;
vec3 diffuseP = (albedoValue / PI);
vec3 lightingPoint = (kD * diffuseP + specularP) * irradianceP;
// --- Compute directional light contribution ---
vec3 lightingDir = vec3(0.0);
if (useDirLight) {
vec3 Ld = normalize(-dirLightDir);
vec3 Hd = normalize(V + Ld);
float NDFd = DistributionGGX(Nn, Hd, roughnessValue);
float Gd = GeometrySmith(Nn, V, Ld, roughnessValue);
vec3 Fd = fresnelSchlick(max(dot(Hd, V), 0.0), F0);
vec3 numeratorD = NDFd * Gd * Fd;
float denominatorD = 4.0 * max(dot(Nn, V), 0.0) * max(dot(Nn, Ld), 0.0) + 0.001;
vec3 specularD = numeratorD / denominatorD;
vec3 kS_d = Fd;
vec3 kD_d = vec3(1.0) - kS_d;
kD_d *= 1.0 - metallicValue;
float NdotLd = max(dot(Nn, Ld), 0.0);
vec3 irradianceD = dirLightColor * NdotLd;
vec3 diffuseD = (albedoValue / PI);
lightingDir = (kD_d * diffuseD + specularD) * irradianceD;
}
// Sum direct lighting contributions.
vec3 lighting = lightingPoint + lightingDir;
// --- Compute environment reflection contribution ---
// Calculate reflection vector and sample cubemap.
vec3 R = reflect(-V, Nn);
vec3 envSpec = texture(envMap, R).rgb;
lighting += envSpec * envReflectionIntensity;
// Add a simple ambient term.
vec3 ambient = vec3(0.03) * albedoValue * aoValue;
lighting += ambient;
// Tone mapping and gamma correction.
lighting = lighting / (lighting + vec3(1.0));
lighting = pow(lighting, vec3(1.0/2.2));
FragColor = vec4(lighting, 1.0);
}
)";
// Skybox shaders
const char* skyboxVertexShaderSource = R"(
#version 330 core
layout (location = 0) in vec3 aPos;
out vec3 TexCoords;
uniform mat4 view;
uniform mat4 projection;
void main(){
TexCoords = aPos;
vec4 pos = projection * view * vec4(aPos, 1.0);
gl_Position = pos.xyww; // set w component to 1.0 to always pass depth test
}
)";
const char* skyboxFragmentShaderSource = R"(
#version 330 core
out vec4 FragColor;
in vec3 TexCoords;
uniform samplerCube skybox;
void main(){
FragColor = texture(skybox, TexCoords);
}
)";
// ------------------------------------------
// Helper functions
// ------------------------------------------
GLuint compileShader(GLenum type, const char* source) {
GLuint shader = glCreateShader(type);
glShaderSource(shader, 1, &source, nullptr);
glCompileShader(shader);
GLint success;
glGetShaderiv(shader, GL_COMPILE_STATUS, &success);
if(!success) {
char infoLog[512];
glGetShaderInfoLog(shader,512,nullptr,infoLog);
std::cerr << "Shader compile error:\n" << infoLog << std::endl;
}
return shader;
}
GLuint createProgram(GLuint vs, GLuint fs) {
GLuint program = glCreateProgram();
glAttachShader(program, vs);
glAttachShader(program, fs);
glLinkProgram(program);
GLint success;
glGetProgramiv(program, GL_LINK_STATUS, &success);
if(!success) {
char infoLog[512];
glGetProgramInfoLog(program,512,nullptr,infoLog);
std::cerr << "Program link error:\n" << infoLog << std::endl;
}
return program;
}
GLuint LoadTexture(const char* path) {
int width, height, nrChannels;
stbi_set_flip_vertically_on_load(true);
unsigned char* data = stbi_load(path, &width, &height, &nrChannels, 0);
if(!data) {
std::cerr << "Failed to load texture: " << path << std::endl;
return 0;
}
GLenum format;
if(nrChannels == 1)
format = GL_RED;
else if(nrChannels == 3)
format = GL_RGB;
else if(nrChannels == 4)
format = GL_RGBA;
GLuint texID;
glGenTextures(1, &texID);
glBindTexture(GL_TEXTURE_2D, texID);
glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data);
glGenerateMipmap(GL_TEXTURE_2D);
// Set texture parameters.
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
stbi_image_free(data);
return texID;
}
// Load a cubemap (skybox) from 6 images. Expect faces in order: right, left, top, bottom, front, back.
GLuint loadCubemap(std::vector<std::string> faces) {
GLuint textureID;
glGenTextures(1, &textureID);
glBindTexture(GL_TEXTURE_CUBE_MAP, textureID);
int width, height, nrChannels;
for(unsigned int i=0; i<faces.size(); i++){
unsigned char* data = stbi_load(faces[i].c_str(), &width, &height, &nrChannels, 0);
if(data){
GLenum format;
if(nrChannels == 1)
format = GL_RED;
else if(nrChannels == 3)
format = GL_RGB;
else if(nrChannels == 4)
format = GL_RGBA;
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i,
0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data);
stbi_image_free(data);
} else {
std::cerr << "Cubemap texture failed to load at path: " << faces[i] << std::endl;
stbi_image_free(data);
}
}
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
return textureID;
}
// Generate a sphere mesh with per-vertex: position (3), normal (3), texcoords (2), tangent (3)
// (Total 11 floats per vertex)
void generateSphereMesh(std::vector<float>& vertices, std::vector<unsigned int>& indices, unsigned int X_SEGMENTS = 64, unsigned int Y_SEGMENTS = 64) {
vertices.clear();
indices.clear();
for (unsigned int y = 0; y <= Y_SEGMENTS; ++y) {
for (unsigned int x = 0; x <= X_SEGMENTS; ++x) {
float xSegment = (float)x / (float)X_SEGMENTS;
float ySegment = (float)y / (float)Y_SEGMENTS;
float xPos = std::cos(xSegment * 2.0f * IM_PI) * std::sin(ySegment * IM_PI);
float yPos = std::cos(ySegment * IM_PI);
float zPos = std::sin(xSegment * 2.0f * IM_PI) * std::sin(ySegment * IM_PI);
// Position.
vertices.push_back(xPos);
vertices.push_back(yPos);
vertices.push_back(zPos);
// Normal (for a unit sphere, same as position).
vertices.push_back(xPos);
vertices.push_back(yPos);
vertices.push_back(zPos);
// Texcoords.
vertices.push_back(xSegment);
vertices.push_back(ySegment);
// Tangent: approximate (derivative with respect to u).
float tangentX = -std::sin(xSegment * 2.0f * IM_PI);
float tangentY = 0.0f;
float tangentZ = std::cos(xSegment * 2.0f * IM_PI);
vertices.push_back(tangentX);
vertices.push_back(tangentY);
vertices.push_back(tangentZ);
}
}
for (unsigned int y = 0; y < Y_SEGMENTS; ++y) {
for (unsigned int x = 0; x < X_SEGMENTS; ++x) {
unsigned int i0 = y * (X_SEGMENTS + 1) + x;
unsigned int i1 = i0 + 1;
unsigned int i2 = i0 + (X_SEGMENTS + 1);
unsigned int i3 = i2 + 1;
indices.push_back(i0);
indices.push_back(i2);
indices.push_back(i1);
indices.push_back(i1);
indices.push_back(i2);
indices.push_back(i3);
}
}
}
// Generate a plane mesh (quad) in the XZ plane centered at origin.
// The plane spans [-1,1] in X and Z, y=0.
void generatePlaneMesh(std::vector<float>& vertices, std::vector<unsigned int>& indices) {
// 4 vertices: position (3), normal (3), texcoords (2), tangent (3) = 11 floats.
float planeVerts[] = {
// positions // normals // texcoords // tangent
-1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f,
1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f,
1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f,
-1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
};
unsigned int planeIndices[] = {
0, 1, 2,
0, 2, 3
};
vertices.assign(planeVerts, planeVerts + sizeof(planeVerts) / sizeof(float));
indices.assign(planeIndices, planeIndices + sizeof(planeIndices)/sizeof(unsigned int));
}
// ------------------------------------------
// Material and Object Structures
// ------------------------------------------
// Extend Material to include height map.
struct Material {
glm::vec3 albedo;
float metallic;
float roughness;
float ao;
// Texture IDs.
GLuint albedoTex;
GLuint metallicTex;
GLuint roughnessTex;
GLuint aoTex;
GLuint normalTex;
GLuint heightTex; // new height map texture.
// Flags indicating texture usage.
bool useAlbedoMap;
bool useMetallicMap;
bool useRoughnessMap;
bool useAOMap;
bool useNormalMap;
bool useHeightMap; // flag for height map
// File path buffers.
char albedoPath[256];
char metallicPath[256];
char roughnessPath[256];
char aoPath[256];
char normalPath[256];
char heightPath[256]; // file path for height map.
Material() : albedo(0.5f, 0.0f, 0.0f), metallic(0.0f), roughness(0.5f), ao(1.0f),
albedoTex(0), metallicTex(0), roughnessTex(0), aoTex(0), normalTex(0), heightTex(0),
useAlbedoMap(false), useMetallicMap(false), useRoughnessMap(false),
useAOMap(false), useNormalMap(false), useHeightMap(false)
{
strcpy(albedoPath, "");
strcpy(metallicPath, "");
strcpy(roughnessPath, "");
strcpy(aoPath, "");
strcpy(normalPath, "");
strcpy(heightPath, "");
}
};
struct SphereInstance {
glm::vec3 position;
float rotation; // in radians.
Material material;
};
struct PlaneInstance {
glm::vec3 position;
float rotation; // around Y axis.
Material material;
};
// ------------------------------------------
// YAML Material Loading and Saving
// ------------------------------------------
Material loadMaterialFromYAML(const std::string& filename) {
Material mat;
try {
YAML::Node config = YAML::LoadFile(filename);
if (config["albedo"]) {
mat.albedo = glm::vec3(config["albedo"][0].as<float>(),
config["albedo"][1].as<float>(),
config["albedo"][2].as<float>());
}
if (config["metallic"])
mat.metallic = config["metallic"].as<float>();
if (config["roughness"])
mat.roughness = config["roughness"].as<float>();
if (config["ao"])
mat.ao = config["ao"].as<float>();
if (config["albedo_texture"]) {
std::string path = config["albedo_texture"].as<std::string>();
strncpy(mat.albedoPath, path.c_str(), sizeof(mat.albedoPath));
GLuint tex = LoadTexture(mat.albedoPath);
if (tex != 0) { mat.albedoTex = tex; mat.useAlbedoMap = true; }
}
if (config["metallic_texture"]) {
std::string path = config["metallic_texture"].as<std::string>();
strncpy(mat.metallicPath, path.c_str(), sizeof(mat.metallicPath));
GLuint tex = LoadTexture(mat.metallicPath);
if (tex != 0) { mat.metallicTex = tex; mat.useMetallicMap = true; }
}
if (config["roughness_texture"]) {
std::string path = config["roughness_texture"].as<std::string>();
strncpy(mat.roughnessPath, path.c_str(), sizeof(mat.roughnessPath));
GLuint tex = LoadTexture(mat.roughnessPath);
if (tex != 0) { mat.roughnessTex = tex; mat.useRoughnessMap = true; }
}
if (config["ao_texture"]) {
std::string path = config["ao_texture"].as<std::string>();
strncpy(mat.aoPath, path.c_str(), sizeof(mat.aoPath));
GLuint tex = LoadTexture(mat.aoPath);
if (tex != 0) { mat.aoTex = tex; mat.useAOMap = true; }
}
if (config["normal_texture"]) {
std::string path = config["normal_texture"].as<std::string>();
strncpy(mat.normalPath, path.c_str(), sizeof(mat.normalPath));
GLuint tex = LoadTexture(mat.normalPath);
if (tex != 0) { mat.normalTex = tex; mat.useNormalMap = true; }
}
if (config["height_texture"]) {
std::string path = config["height_texture"].as<std::string>();
strncpy(mat.heightPath, path.c_str(), sizeof(mat.heightPath));
GLuint tex = LoadTexture(mat.heightPath);
if (tex != 0) { mat.heightTex = tex; mat.useHeightMap = true; }
}
} catch(const std::exception& e) {
std::cerr << "Error loading YAML material from " << filename << ": " << e.what() << std::endl;
}
return mat;
}
bool saveMaterialToYAML(const std::string& filename, const Material& mat) {
YAML::Emitter out;
out << YAML::BeginMap;
out << YAML::Key << "albedo" << YAML::Value << YAML::Flow << std::vector<float>{mat.albedo.r, mat.albedo.g, mat.albedo.b};
out << YAML::Key << "metallic" << YAML::Value << mat.metallic;
out << YAML::Key << "roughness" << YAML::Value << mat.roughness;
out << YAML::Key << "ao" << YAML::Value << mat.ao;
if (mat.useAlbedoMap)
out << YAML::Key << "albedo_texture" << YAML::Value << std::string(mat.albedoPath);
if (mat.useMetallicMap)
out << YAML::Key << "metallic_texture" << YAML::Value << std::string(mat.metallicPath);
if (mat.useRoughnessMap)
out << YAML::Key << "roughness_texture" << YAML::Value << std::string(mat.roughnessPath);
if (mat.useAOMap)
out << YAML::Key << "ao_texture" << YAML::Value << std::string(mat.aoPath);
if (mat.useNormalMap)
out << YAML::Key << "normal_texture" << YAML::Value << std::string(mat.normalPath);
if (mat.useHeightMap)
out << YAML::Key << "height_texture" << YAML::Value << std::string(mat.heightPath);
out << YAML::EndMap;
std::ofstream fout(filename);
if(!fout.is_open()){
std::cerr << "Failed to open " << filename << " for saving material." << std::endl;
return false;
}
fout << out.c_str();
fout.close();
return true;
}
// ------------------------------------------
// Skybox geometry
// ------------------------------------------
// Cube vertices for the skybox.
float skyboxVertices[] = {
// positions
-1.0f, 1.0f, -1.0f,
-1.0f, -1.0f, -1.0f,
1.0f, -1.0f, -1.0f,
1.0f, -1.0f, -1.0f,
1.0f, 1.0f, -1.0f,
-1.0f, 1.0f, -1.0f,
-1.0f, -1.0f, 1.0f,
-1.0f, -1.0f, -1.0f,
-1.0f, 1.0f, -1.0f,
-1.0f, 1.0f, -1.0f,
-1.0f, 1.0f, 1.0f,
-1.0f, -1.0f, 1.0f,
1.0f, -1.0f, -1.0f,
1.0f, -1.0f, 1.0f,
1.0f, 1.0f, 1.0f,
1.0f, 1.0f, 1.0f,
1.0f, 1.0f, -1.0f,
1.0f, -1.0f, -1.0f,
-1.0f, -1.0f, 1.0f,
-1.0f, 1.0f, 1.0f,
1.0f, 1.0f, 1.0f,
1.0f, 1.0f, 1.0f,
1.0f, -1.0f, 1.0f,
-1.0f, -1.0f, 1.0f,
-1.0f, 1.0f, -1.0f,
1.0f, 1.0f, -1.0f,
1.0f, 1.0f, 1.0f,
1.0f, 1.0f, 1.0f,
-1.0f, 1.0f, 1.0f,
-1.0f, 1.0f, -1.0f,
-1.0f, -1.0f, -1.0f,
-1.0f, -1.0f, 1.0f,
1.0f, -1.0f, -1.0f,
1.0f, -1.0f, -1.0f,
-1.0f, -1.0f, 1.0f,
1.0f, -1.0f, 1.0f
};
int main(){
if(!glfwInit()){
std::cerr << "Failed to initialize GLFW!" << std::endl;
return -1;
}
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
GLFWwindow* window = glfwCreateWindow(800, 600, "PBR Renderer with Height Maps, Improved Lighting & Skybox", nullptr, nullptr);
if(!window){
std::cerr << "Failed to create GLFW window!" << std::endl;
glfwTerminate();
return -1;
}
glfwMakeContextCurrent(window);
glewExperimental = GL_TRUE;
if(glewInit() != GLEW_OK){
std::cerr << "Failed to initialize GLEW!" << std::endl;
return -1;
}
glEnable(GL_DEPTH_TEST);
// Setup ImGui.
IMGUI_CHECKVERSION();
ImGui::CreateContext();
ImGuiIO& io = ImGui::GetIO(); (void)io;
ImGui::StyleColorsDark();
ImGui_ImplGlfw_InitForOpenGL(window, true);
ImGui_ImplOpenGL3_Init("#version 330");
// Compile main shaders.
GLuint vs = compileShader(GL_VERTEX_SHADER, vertexShaderSource);
GLuint fs = compileShader(GL_FRAGMENT_SHADER, fragmentShaderSource);
GLuint shaderProgram = createProgram(vs, fs);
glDeleteShader(vs);
glDeleteShader(fs);
// Compile skybox shaders.
GLuint skybox_vs = compileShader(GL_VERTEX_SHADER, skyboxVertexShaderSource);
GLuint skybox_fs = compileShader(GL_FRAGMENT_SHADER, skyboxFragmentShaderSource);
GLuint skyboxShader = createProgram(skybox_vs, skybox_fs);
glDeleteShader(skybox_vs);
glDeleteShader(skybox_fs);
// Generate sphere mesh.
std::vector<float> sphereVertices;
std::vector<unsigned int> sphereIndices;
generateSphereMesh(sphereVertices, sphereIndices);
GLuint sphereVAO, sphereVBO, sphereEBO;
glGenVertexArrays(1, &sphereVAO);
glGenBuffers(1, &sphereVBO);
glGenBuffers(1, &sphereEBO);
glBindVertexArray(sphereVAO);
glBindBuffer(GL_ARRAY_BUFFER, sphereVBO);
glBufferData(GL_ARRAY_BUFFER, sphereVertices.size() * sizeof(float), sphereVertices.data(), GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, sphereEBO);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sphereIndices.size() * sizeof(unsigned int), sphereIndices.data(), GL_STATIC_DRAW);
// Attributes: pos (3), normal (3), texcoords (2), tangent (3)
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 11 * sizeof(float), (void*)0);
glEnableVertexAttribArray(0);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 11 * sizeof(float), (void*)(3 * sizeof(float)));
glEnableVertexAttribArray(1);
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 11 * sizeof(float), (void*)(6 * sizeof(float)));
glEnableVertexAttribArray(2);
glVertexAttribPointer(3, 3, GL_FLOAT, GL_FALSE, 11 * sizeof(float), (void*)(8 * sizeof(float)));
glEnableVertexAttribArray(3);
glBindVertexArray(0);
// Generate plane mesh.
std::vector<float> planeVertices;
std::vector<unsigned int> planeIndices;
generatePlaneMesh(planeVertices, planeIndices);
GLuint planeVAO, planeVBO, planeEBO;
glGenVertexArrays(1, &planeVAO);
glGenBuffers(1, &planeVBO);
glGenBuffers(1, &planeEBO);
glBindVertexArray(planeVAO);
glBindBuffer(GL_ARRAY_BUFFER, planeVBO);
glBufferData(GL_ARRAY_BUFFER, planeVertices.size() * sizeof(float), planeVertices.data(), GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, planeEBO);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, planeIndices.size() * sizeof(unsigned int), planeIndices.data(), GL_STATIC_DRAW);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 11 * sizeof(float), (void*)0);
glEnableVertexAttribArray(0);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 11 * sizeof(float), (void*)(3 * sizeof(float)));
glEnableVertexAttribArray(1);
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 11 * sizeof(float), (void*)(6 * sizeof(float)));
glEnableVertexAttribArray(2);
glVertexAttribPointer(3, 3, GL_FLOAT, GL_FALSE, 11 * sizeof(float), (void*)(8 * sizeof(float)));
glEnableVertexAttribArray(3);
glBindVertexArray(0);
// Set up skybox VAO & VBO.
GLuint skyboxVAO, skyboxVBO;
glGenVertexArrays(1, &skyboxVAO);
glGenBuffers(1, &skyboxVBO);
glBindVertexArray(skyboxVAO);
glBindBuffer(GL_ARRAY_BUFFER, skyboxVBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(skyboxVertices), &skyboxVertices, GL_STATIC_DRAW);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);
glEnableVertexAttribArray(0);
glBindVertexArray(0);
// Load a default cubemap for the skybox.
std::vector<std::string> faces{
"skybox/right.jpg",
"skybox/left.jpg",
"skybox/top.jpg",
"skybox/bottom.jpg",
"skybox/front.jpg",
"skybox/back.jpg"
};
GLuint cubemapTexture = loadCubemap(faces);
// ------------------------------------------
// Scene Data
// ------------------------------------------
std::vector<SphereInstance> spheres;
spheres.push_back({ glm::vec3(0.0f, 0.0f, 0.0f), 0.0f, Material() });
std::vector<PlaneInstance> planes;
planes.push_back({ glm::vec3(0.0f, -1.0f, 0.0f), 0.0f, Material() });
// Global lighting parameters.
glm::vec3 camPosVec(0.0f, 1.0f, 5.0f);
glm::vec3 pointLightPos(0.0f, 3.0f, 3.0f);
glm::vec3 pointLightColor(300.0f, 300.0f, 300.0f);
// Directional light.
bool useDirLight = true;
glm::vec3 dirLightDir(-0.2f, -1.0f, -0.3f);
glm::vec3 dirLightColor(0.8f, 0.8f, 0.8f);
// Toggle for which object to render: 0 = sphere, 1 = plane.
int activeObject = 0;
// For material YAML loading/saving.
static char yamlPathBuffer[256] = "";
// Declare a global parallax scale variable so it is available later.
static float globalParallaxScale = 0.05f;
// Main Loop.
while(!glfwWindowShouldClose(window)){
glfwPollEvents();
ImGui_ImplOpenGL3_NewFrame();
ImGui_ImplGlfw_NewFrame();
ImGui::NewFrame();
// ---------------------- ImGui UI -----------------------
{
ImGui::Begin("Scene Controls");
ImGui::Text("Global Lighting");
ImGui::DragFloat3("Camera Pos", glm::value_ptr(camPosVec), 0.1f);
ImGui::DragFloat3("Point Light Pos", glm::value_ptr(pointLightPos), 0.1f);
ImGui::ColorEdit3("Point Light Color", glm::value_ptr(pointLightColor));
ImGui::Checkbox("Use Directional Light", &useDirLight);
ImGui::DragFloat3("Dir Light Dir", glm::value_ptr(dirLightDir), 0.1f);
ImGui::ColorEdit3("Dir Light Color", glm::value_ptr(dirLightColor));
ImGui::Separator();
ImGui::RadioButton("Render Sphere", &activeObject, 0);
ImGui::RadioButton("Render Plane", &activeObject, 1);
ImGui::Separator();
// Material controls for the active object.
Material* mat = nullptr;
if(activeObject == 0 && !spheres.empty())
mat = &spheres[0].material;
else if(activeObject == 1 && !planes.empty())
mat = &planes[0].material;
if(mat){
ImGui::Text("Material Properties:");
ImGui::ColorEdit3("Albedo", glm::value_ptr(mat->albedo));
ImGui::SliderFloat("Metallic", &mat->metallic, 0.0f, 1.0f);
ImGui::SliderFloat("Roughness", &mat->roughness, 0.05f, 1.0f);
ImGui::SliderFloat("AO", &mat->ao, 0.0f, 1.0f);
ImGui::SliderFloat("Parallax Scale", &globalParallaxScale, 0.0f, 0.2f);
ImGui::InputText("Albedo Texture Path", mat->albedoPath, sizeof(mat->albedoPath));
if(ImGui::Button("Load Albedo Texture")){
GLuint tex = LoadTexture(mat->albedoPath);
if(tex != 0){ mat->albedoTex = tex; mat->useAlbedoMap = true; }
}
ImGui::InputText("Metallic Texture Path", mat->metallicPath, sizeof(mat->metallicPath));
if(ImGui::Button("Load Metallic Texture")){
GLuint tex = LoadTexture(mat->metallicPath);
if(tex != 0){ mat->metallicTex = tex; mat->useMetallicMap = true; }
}
ImGui::InputText("Roughness Texture Path", mat->roughnessPath, sizeof(mat->roughnessPath));
if(ImGui::Button("Load Roughness Texture")){
GLuint tex = LoadTexture(mat->roughnessPath);
if(tex != 0){ mat->roughnessTex = tex; mat->useRoughnessMap = true; }
}
ImGui::InputText("AO Texture Path", mat->aoPath, sizeof(mat->aoPath));
if(ImGui::Button("Load AO Texture")){
GLuint tex = LoadTexture(mat->aoPath);
if(tex != 0){ mat->aoTex = tex; mat->useAOMap = true; }
}
ImGui::InputText("Normal Texture Path", mat->normalPath, sizeof(mat->normalPath));
if(ImGui::Button("Load Normal Texture")){
GLuint tex = LoadTexture(mat->normalPath);
if(tex != 0){ mat->normalTex = tex; mat->useNormalMap = true; }
}
ImGui::InputText("Height Texture Path", mat->heightPath, sizeof(mat->heightPath));
if(ImGui::Button("Load Height Texture")){
GLuint tex = LoadTexture(mat->heightPath);
if(tex != 0){ mat->heightTex = tex; mat->useHeightMap = true; }
}
ImGui::InputText("YAML Material Path", yamlPathBuffer, sizeof(yamlPathBuffer));
if(ImGui::Button("Load Material from YAML")){
Material m = loadMaterialFromYAML(yamlPathBuffer);
*mat = m;
}
if(ImGui::Button("Save Material to YAML")){
if(saveMaterialToYAML(std::string(yamlPathBuffer), *mat))
std::cout << "Material saved to " << yamlPathBuffer << std::endl;
}
}
ImGui::Separator();
ImGui::Text("Skybox: Using default paths in code.");
ImGui::End();
}
// ---------------------- Rendering ----------------------
int scrWidth, scrHeight;
glfwGetFramebufferSize(window, &scrWidth, &scrHeight);
float aspect = scrWidth / static_cast<float>(scrHeight);
glViewport(0, 0, scrWidth, scrHeight);
glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glm::mat4 projection = glm::perspective(glm::radians(45.0f), aspect, 0.1f, 100.0f);
glm::mat4 view = glm::lookAt(camPosVec, glm::vec3(0.0f,0.0f,0.0f), glm::vec3(0,1,0));
// Render scene objects using the main shader.
glUseProgram(shaderProgram);
glUniformMatrix4fv(glGetUniformLocation(shaderProgram, "projection"), 1, GL_FALSE, glm::value_ptr(projection));
glUniformMatrix4fv(glGetUniformLocation(shaderProgram, "view"), 1, GL_FALSE, glm::value_ptr(view));
glUniform3fv(glGetUniformLocation(shaderProgram, "camPos"), 1, glm::value_ptr(camPosVec));
glUniform3fv(glGetUniformLocation(shaderProgram, "pointLightPos"), 1, glm::value_ptr(pointLightPos));
glUniform3fv(glGetUniformLocation(shaderProgram, "pointLightColor"), 1, glm::value_ptr(pointLightColor));
glUniform1i(glGetUniformLocation(shaderProgram, "useDirLight"), useDirLight);
glUniform3fv(glGetUniformLocation(shaderProgram, "dirLightDir"), 1, glm::value_ptr(dirLightDir));
glUniform3fv(glGetUniformLocation(shaderProgram, "dirLightColor"), 1, glm::value_ptr(dirLightColor));
glUniform1f(glGetUniformLocation(shaderProgram, "parallaxScale"), globalParallaxScale);
glUniform1f(glGetUniformLocation(shaderProgram, "PI"), IM_PI);
// Set environment reflection uniforms.
glActiveTexture(GL_TEXTURE6);
glBindTexture(GL_TEXTURE_CUBE_MAP, cubemapTexture);
glUniform1i(glGetUniformLocation(shaderProgram, "envMap"), 6);
glUniform1f(glGetUniformLocation(shaderProgram, "envReflectionIntensity"), 0.3f); // adjust intensity as needed
if(activeObject == 0 && !spheres.empty()){
// Render sphere.
glm::mat4 model = glm::translate(glm::mat4(1.0f), spheres[0].position);
model = glm::rotate(model, spheres[0].rotation, glm::vec3(0,1,0));
glUniformMatrix4fv(glGetUniformLocation(shaderProgram, "model"), 1, GL_FALSE, glm::value_ptr(model));
Material& m = spheres[0].material;
glUniform3fv(glGetUniformLocation(shaderProgram, "albedo"), 1, glm::value_ptr(m.albedo));
glUniform1f(glGetUniformLocation(shaderProgram, "metallic"), m.metallic);
glUniform1f(glGetUniformLocation(shaderProgram, "roughness"), m.roughness);
glUniform1f(glGetUniformLocation(shaderProgram, "ao"), m.ao);
glUniform1i(glGetUniformLocation(shaderProgram, "useAlbedoMap"), m.useAlbedoMap ? 1 : 0);
glUniform1i(glGetUniformLocation(shaderProgram, "useMetallicMap"), m.useMetallicMap ? 1 : 0);
glUniform1i(glGetUniformLocation(shaderProgram, "useRoughnessMap"), m.useRoughnessMap ? 1 : 0);
glUniform1i(glGetUniformLocation(shaderProgram, "useAOMap"), m.useAOMap ? 1 : 0);
glUniform1i(glGetUniformLocation(shaderProgram, "useNormalMap"), m.useNormalMap ? 1 : 0);
glUniform1i(glGetUniformLocation(shaderProgram, "useHeightMap"), m.useHeightMap ? 1 : 0);
if(m.useAlbedoMap){
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, m.albedoTex);
glUniform1i(glGetUniformLocation(shaderProgram, "albedoMap"), 0);
}
if(m.useMetallicMap){
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, m.metallicTex);
glUniform1i(glGetUniformLocation(shaderProgram, "metallicMap"), 1);
}
if(m.useRoughnessMap){
glActiveTexture(GL_TEXTURE2);
glBindTexture(GL_TEXTURE_2D, m.roughnessTex);
glUniform1i(glGetUniformLocation(shaderProgram, "roughnessMap"), 2);
}
if(m.useAOMap){
glActiveTexture(GL_TEXTURE3);
glBindTexture(GL_TEXTURE_2D, m.aoTex);
glUniform1i(glGetUniformLocation(shaderProgram, "aoMap"), 3);
}
if(m.useNormalMap){
glActiveTexture(GL_TEXTURE4);
glBindTexture(GL_TEXTURE_2D, m.normalTex);
glUniform1i(glGetUniformLocation(shaderProgram, "normalMap"), 4);
}
if(m.useHeightMap){
glActiveTexture(GL_TEXTURE5);
glBindTexture(GL_TEXTURE_2D, m.heightTex);
glUniform1i(glGetUniformLocation(shaderProgram, "heightMap"), 5);
}
glBindVertexArray(sphereVAO);
glDrawElements(GL_TRIANGLES, sphereIndices.size(), GL_UNSIGNED_INT, 0);
glBindVertexArray(0);
}
else if(activeObject == 1 && !planes.empty()){
// Render plane.
glm::mat4 model = glm::translate(glm::mat4(1.0f), planes[0].position);
model = glm::rotate(model, planes[0].rotation, glm::vec3(0,1,0));
glUniformMatrix4fv(glGetUniformLocation(shaderProgram, "model"), 1, GL_FALSE, glm::value_ptr(model));
Material& m = planes[0].material;
glUniform3fv(glGetUniformLocation(shaderProgram, "albedo"), 1, glm::value_ptr(m.albedo));
glUniform1f(glGetUniformLocation(shaderProgram, "metallic"), m.metallic);
glUniform1f(glGetUniformLocation(shaderProgram, "roughness"), m.roughness);
glUniform1f(glGetUniformLocation(shaderProgram, "ao"), m.ao);
glUniform1i(glGetUniformLocation(shaderProgram, "useAlbedoMap"), m.useAlbedoMap ? 1 : 0);
glUniform1i(glGetUniformLocation(shaderProgram, "useMetallicMap"), m.useMetallicMap ? 1 : 0);
glUniform1i(glGetUniformLocation(shaderProgram, "useRoughnessMap"), m.useRoughnessMap ? 1 : 0);
glUniform1i(glGetUniformLocation(shaderProgram, "useAOMap"), m.useAOMap ? 1 : 0);
glUniform1i(glGetUniformLocation(shaderProgram, "useNormalMap"), m.useNormalMap ? 1 : 0);
glUniform1i(glGetUniformLocation(shaderProgram, "useHeightMap"), m.useHeightMap ? 1 : 0);
if(m.useAlbedoMap){
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, m.albedoTex);
glUniform1i(glGetUniformLocation(shaderProgram, "albedoMap"), 0);
}
if(m.useMetallicMap){
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, m.metallicTex);
glUniform1i(glGetUniformLocation(shaderProgram, "metallicMap"), 1);
}
if(m.useRoughnessMap){
glActiveTexture(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, m.roughnessTex);
glUniform1i(glGetUniformLocation(shaderProgram, "roughnessMap"), 2);
}
if(m.useAOMap){
glActiveTexture(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, m.aoTex);
glUniform1i(glGetUniformLocation(shaderProgram, "aoMap"), 3);
}
if(m.useNormalMap){
glActiveTexture(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, m.normalTex);
glUniform1i(glGetUniformLocation(shaderProgram, "normalMap"), 4);
}
if(m.useHeightMap){
glActiveTexture(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, m.heightTex);
glUniform1i(glGetUniformLocation(shaderProgram, "heightMap"), 5);
}
glBindVertexArray(planeVAO);
glDrawElements(GL_TRIANGLES, planeIndices.size(), GL_UNSIGNED_INT, 0);
glBindVertexArray(0);
}
// ---------------------- Render Skybox ----------------------
glDepthFunc(GL_LEQUAL);
glUseProgram(skyboxShader);
// Remove translation from the view matrix.
glm::mat4 viewSky = glm::mat4(glm::mat3(view));
glUniformMatrix4fv(glGetUniformLocation(skyboxShader, "view"), 1, GL_FALSE, glm::value_ptr(viewSky));
glUniformMatrix4fv(glGetUniformLocation(skyboxShader, "projection"), 1, GL_FALSE, glm::value_ptr(projection));
glBindVertexArray(skyboxVAO);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_CUBE_MAP, cubemapTexture);
glUniform1i(glGetUniformLocation(skyboxShader, "skybox"), 0);
glDrawArrays(GL_TRIANGLES, 0, 36);
glBindVertexArray(0);
glDepthFunc(GL_LESS);
ImGui::Render();
ImGui_ImplOpenGL3_RenderDrawData(ImGui::GetDrawData());
glfwSwapBuffers(window);
}
// Cleanup
glDeleteVertexArrays(1, &sphereVAO);
glDeleteBuffers(1, &sphereVBO);
glDeleteBuffers(1, &sphereEBO);
glDeleteVertexArrays(1, &planeVAO);
glDeleteBuffers(1, &planeVBO);
glDeleteBuffers(1, &planeEBO);
glDeleteVertexArrays(1, &skyboxVAO);
glDeleteBuffers(1, &skyboxVBO);
glDeleteProgram(shaderProgram);
glDeleteProgram(skyboxShader);
ImGui_ImplOpenGL3_Shutdown();
ImGui_ImplGlfw_Shutdown();
ImGui::DestroyContext();
glfwTerminate();
return 0;
}