small-projects/Object-Recognision/main.py
OusmBlueNinja d597d1941c AI stuff
2025-04-09 11:53:36 -05:00

141 lines
4.7 KiB
Python

import cv2
import numpy as np
import time
# ----------------------------
# Configuration and Setup
# ----------------------------
# Paths to the YOLO files (update these if your files are in a different directory)
config_path = './yolov3.cfg'
weights_path = './yolov3.weights'
names_path = './coco.names'
# Load class names from coco.names file
with open(names_path, 'r') as f:
classes = [line.strip() for line in f.readlines()]
# Set up the neural network
net = cv2.dnn.readNetFromDarknet(config_path, weights_path)
# Optionally, set preferable backend and target to improve speed (e.g., use OpenCV's CUDA if available)
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU) # Change to DNN_TARGET_CUDA if available
# Get all layer names from the network
layer_names = net.getLayerNames()
# Use .flatten() so that we always work with a 1D array of indices.
output_layers = [layer_names[i - 1] for i in net.getUnconnectedOutLayers().flatten()]
# Confidence and Non-max suppression thresholds
conf_threshold = 0.5 # Minimum probability to filter weak detections
nms_threshold = 0.4 # Non-maximum suppression threshold
# Colors for each class for bounding boxes (for visualization)
np.random.seed(42)
colors = np.random.randint(0, 255, size=(len(classes), 3), dtype='uint8')
# ----------------------------
# Object Detection Function
# ----------------------------
def detect_objects(frame):
"""
Process a frame to detect objects using YOLO.
Returns bounding boxes, confidences, and class IDs.
"""
height, width = frame.shape[:2]
# Create a blob from the input frame and perform a forward pass
blob = cv2.dnn.blobFromImage(frame, scalefactor=1/255.0, size=(416, 416),
swapRB=True, crop=False)
net.setInput(blob)
# Inference; YOLO returns predictions with shape (N, 85) for each detected object
start = time.time()
detections = net.forward(output_layers)
end = time.time()
# Uncomment to print inference time for debugging
# print(f"Inference time: {end - start:.2f} seconds")
boxes = []
confidences = []
class_ids = []
# Process each output layer's detections
for output in detections:
for detection in output:
# detection[0:4] are center_x, center_y, width and height; detection[5:] are class probabilities
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > conf_threshold:
# Scale bounding box coordinates back to the size of the image
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
# Calculate the top-left coordinate of the bounding box
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
# Apply non-max suppression to remove overlapping boxes
indices = cv2.dnn.NMSBoxes(boxes, confidences, conf_threshold, nms_threshold)
final_boxes = []
final_confidences = []
final_class_ids = []
if len(indices) > 0:
for i in indices.flatten():
final_boxes.append(boxes[i])
final_confidences.append(confidences[i])
final_class_ids.append(class_ids[i])
return final_boxes, final_confidences, final_class_ids
# ----------------------------
# Main Function: Real-Time Object Detection
# ----------------------------
def main():
cap = cv2.VideoCapture(0) # Start the webcam
if not cap.isOpened():
print("Error: Could not open webcam.")
return
while True:
ret, frame = cap.read()
if not ret:
print("Failed to grab a frame.")
break
# Detect objects in the frame
boxes, confidences, class_ids = detect_objects(frame)
# Draw bounding boxes and labels on the frame
for i, box in enumerate(boxes):
x, y, w, h = box
color = [int(c) for c in colors[class_ids[i]]]
label = f"{classes[class_ids[i]]}: {confidences[i]:.2f}"
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
cv2.putText(frame, label, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX,
0.5, color, 2)
# Display the frame
cv2.imshow("Real-Time Object Detection", frame)
# Exit on pressing 'q'
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
main()