small-projects/cpu-emulator/main.cpp

604 lines
21 KiB
C++
Raw Normal View History

2025-04-12 18:24:30 +00:00
// main.cpp
#include <cstdio>
2025-04-11 01:15:38 +00:00
#include <cstdint>
#include <cstring>
#include <sstream>
2025-04-12 18:24:30 +00:00
#include <string>
#include <vector>
#include <chrono>
#include <thread>
// OpenGL/GLFW and GLEW headers.
#include <GL/glew.h>
#include <GLFW/glfw3.h>
// ImGui headers.
2025-04-11 01:15:38 +00:00
#include "imgui.h"
#include "imgui_impl_glfw.h"
#include "imgui_impl_opengl3.h"
2025-04-12 18:24:30 +00:00
#include "out.h"
// --------------------------------------------------------------------------------
// CPU Flags structure (for debugging and visualization)
// --------------------------------------------------------------------------------
struct CPUFlags {
bool zero;
bool negative;
bool carry;
bool overflow;
};
2025-04-11 01:15:38 +00:00
2025-04-12 18:24:30 +00:00
// --------------------------------------------------------------------------------
// RISC-V Emulator Class.
// This example implements a subset of the RV32I instructions plus ECALL for
// basic system calls that print data to a virtual terminal.
class RiscVEmulator {
2025-04-11 01:15:38 +00:00
public:
2025-04-12 18:24:30 +00:00
// 32 general-purpose registers and the program counter.
uint32_t registers[32];
uint32_t pc;
// Memory implemented as an array of 32-bit words.
std::vector<uint32_t> memory;
// CPU flags for arithmetic operations.
CPUFlags flags;
// A flag to halt execution in case of error.
bool halted;
// A buffer to collect terminal output (our “screen”).
std::string terminalOutput;
// Constructor: allocate memory (memSize in words) and reset the CPU.
RiscVEmulator(size_t memSize)
: pc(0), memory(memSize, 0), halted(false)
{
reset();
}
2025-04-11 01:15:38 +00:00
2025-04-12 18:24:30 +00:00
// Reset CPU state and (optionally) memory.
void reset() {
pc = 0;
std::memset(registers, 0, sizeof(registers));
flags = { false, false, false, false };
halted = false;
terminalOutput.clear();
}
2025-04-11 01:15:38 +00:00
2025-04-12 18:24:30 +00:00
// Load a program (vector of 32-bit instructions) into memory.
void loadProgram(const std::vector<uint32_t>& program) {
for (size_t i = 0; i < program.size() && i < memory.size(); i++) {
2025-04-11 01:15:38 +00:00
memory[i] = program[i];
2025-04-12 18:24:30 +00:00
}
}
// Helper to update flags on addition.
void updateFlagsForAddition(uint32_t op1, uint32_t op2, uint32_t result) {
flags.zero = (result == 0);
flags.negative = (static_cast<int32_t>(result) < 0);
flags.carry = (result < op1);
bool sign1 = (static_cast<int32_t>(op1) < 0);
bool sign2 = (static_cast<int32_t>(op2) < 0);
bool signr = (static_cast<int32_t>(result) < 0);
flags.overflow = ((sign1 == sign2) && (signr != sign1));
}
// Helper to update flags on subtraction.
void updateFlagsForSubtraction(uint32_t op1, uint32_t op2, uint32_t result) {
flags.zero = (result == 0);
flags.negative = (static_cast<int32_t>(result) < 0);
flags.carry = (op1 < op2);
bool sign1 = (static_cast<int32_t>(op1) < 0);
bool sign2 = (static_cast<int32_t>(op2) < 0);
bool signr = (static_cast<int32_t>(result) < 0);
flags.overflow = ((sign1 != sign2) && (signr != sign1));
}
// Helper: Read a null-terminated string from memory starting at the given address.
// This function assumes that the string is stored in little-endian order.
std::string readString(uint32_t address) {
std::string result;
while (true) {
if (address / 4 >= memory.size())
break;
uint32_t word = memory[address / 4];
// Extract 4 bytes from the word.
for (int i = 0; i < 4; i++) {
char ch = (char)((word >> (i * 8)) & 0xFF);
if (ch == '\0') return result;
result.push_back(ch);
}
address += 4;
}
return result;
2025-04-11 01:15:38 +00:00
}
2025-04-12 18:24:30 +00:00
// Execute one instruction (fetch-decode-execute).
2025-04-11 01:15:38 +00:00
void step() {
2025-04-12 18:24:30 +00:00
if (halted) return;
if (pc % 4 != 0 || (pc / 4) >= memory.size()) {
halted = true;
return;
}
uint32_t inst = memory[pc / 4];
uint32_t opcode = inst & 0x7F;
2025-04-11 01:15:38 +00:00
switch (opcode) {
2025-04-12 18:24:30 +00:00
// R-type instructions.
case 0x33: {
uint32_t rd = (inst >> 7) & 0x1F;
uint32_t rs1 = (inst >> 15) & 0x1F;
uint32_t rs2 = (inst >> 20) & 0x1F;
uint32_t funct3 = (inst >> 12) & 0x7;
uint32_t funct7 = (inst >> 25) & 0x7F;
switch (funct3) {
case 0x0:
if (funct7 == 0x00) { // ADD
uint32_t res = registers[rs1] + registers[rs2];
registers[rd] = res;
updateFlagsForAddition(registers[rs1], registers[rs2], res);
} else if (funct7 == 0x20) { // SUB
uint32_t res = registers[rs1] - registers[rs2];
registers[rd] = res;
updateFlagsForSubtraction(registers[rs1], registers[rs2], res);
}
2025-04-11 01:15:38 +00:00
break;
2025-04-12 18:24:30 +00:00
case 0x1: // SLL
registers[rd] = registers[rs1] << (registers[rs2] & 0x1F);
2025-04-11 01:15:38 +00:00
break;
2025-04-12 18:24:30 +00:00
case 0x2: // SLT
registers[rd] = ((int32_t)registers[rs1] < (int32_t)registers[rs2]) ? 1 : 0;
break;
case 0x3: // SLTU
registers[rd] = (registers[rs1] < registers[rs2]) ? 1 : 0;
break;
case 0x4: // XOR
registers[rd] = registers[rs1] ^ registers[rs2];
break;
case 0x5:
if (funct7 == 0x00) { // SRL
registers[rd] = registers[rs1] >> (registers[rs2] & 0x1F);
} else if (funct7 == 0x20) { // SRA
registers[rd] = ((int32_t)registers[rs1]) >> (registers[rs2] & 0x1F);
}
break;
case 0x6: // OR
registers[rd] = registers[rs1] | registers[rs2];
break;
case 0x7: // AND
registers[rd] = registers[rs1] & registers[rs2];
2025-04-11 01:15:38 +00:00
break;
}
2025-04-12 18:24:30 +00:00
pc += 4;
break;
}
2025-04-11 01:15:38 +00:00
2025-04-12 18:24:30 +00:00
// I-type arithmetic instructions.
case 0x13: {
uint32_t rd = (inst >> 7) & 0x1F;
uint32_t rs1 = (inst >> 15) & 0x1F;
uint32_t funct3 = (inst >> 12) & 0x7;
int32_t imm = ((int32_t)inst) >> 20;
switch (funct3) {
case 0x0: { // ADDI
uint32_t res = registers[rs1] + imm;
registers[rd] = res;
updateFlagsForAddition(registers[rs1], imm, res);
2025-04-11 01:15:38 +00:00
break;
}
2025-04-12 18:24:30 +00:00
case 0x2: // SLTI
registers[rd] = (((int32_t)registers[rs1]) < imm) ? 1 : 0;
2025-04-11 01:15:38 +00:00
break;
2025-04-12 18:24:30 +00:00
case 0x3: // SLTIU
registers[rd] = (registers[rs1] < (uint32_t)imm) ? 1 : 0;
2025-04-11 01:15:38 +00:00
break;
2025-04-12 18:24:30 +00:00
case 0x4: // XORI
registers[rd] = registers[rs1] ^ imm;
2025-04-11 01:15:38 +00:00
break;
2025-04-12 18:24:30 +00:00
case 0x6: // ORI
registers[rd] = registers[rs1] | imm;
2025-04-11 01:15:38 +00:00
break;
2025-04-12 18:24:30 +00:00
case 0x7: // ANDI
registers[rd] = registers[rs1] & imm;
break;
case 0x1: { // SLLI
uint32_t shamt = imm & 0x1F;
registers[rd] = registers[rs1] << shamt;
2025-04-11 01:15:38 +00:00
break;
}
2025-04-12 18:24:30 +00:00
case 0x5: {
uint32_t shamt = imm & 0x1F;
uint32_t imm_high = (inst >> 25) & 0x7F;
if (imm_high == 0x00) { // SRLI
registers[rd] = registers[rs1] >> shamt;
} else if (imm_high == 0x20) { // SRAI
registers[rd] = ((int32_t)registers[rs1]) >> shamt;
}
2025-04-11 01:15:38 +00:00
break;
}
2025-04-12 18:24:30 +00:00
}
pc += 4;
break;
}
// Branch instructions (B-type).
case 0x63: {
uint32_t rs1 = (inst >> 15) & 0x1F;
uint32_t rs2 = (inst >> 20) & 0x1F;
uint32_t funct3 = (inst >> 12) & 0x7;
int32_t imm = (((inst >> 31) & 0x1) << 12) |
(((inst >> 25) & 0x3F) << 5) |
(((inst >> 8) & 0xF) << 1) |
(((inst >> 7) & 0x1) << 11);
if (imm & (1 << 12))
imm |= 0xFFFFE000;
switch (funct3) {
case 0x0: // BEQ
pc = (registers[rs1] == registers[rs2]) ? (pc + imm) : (pc + 4);
break;
case 0x1: // BNE
pc = (registers[rs1] != registers[rs2]) ? (pc + imm) : (pc + 4);
break;
case 0x4: // BLT
pc = (((int32_t)registers[rs1]) < ((int32_t)registers[rs2])) ? (pc + imm) : (pc + 4);
break;
case 0x5: // BGE
pc = (((int32_t)registers[rs1]) >= ((int32_t)registers[rs2])) ? (pc + imm) : (pc + 4);
break;
case 0x6: // BLTU
pc = (registers[rs1] < registers[rs2]) ? (pc + imm) : (pc + 4);
break;
case 0x7: // BGEU
pc = (registers[rs1] >= registers[rs2]) ? (pc + imm) : (pc + 4);
2025-04-11 01:15:38 +00:00
break;
}
2025-04-12 18:24:30 +00:00
break;
}
2025-04-11 01:15:38 +00:00
2025-04-12 18:24:30 +00:00
// JAL: J-type jump.
case 0x6F: {
uint32_t rd = (inst >> 7) & 0x1F;
int32_t imm = (((inst >> 31) & 0x1) << 20) |
(((inst >> 21) & 0x3FF) << 1) |
(((inst >> 20) & 0x1) << 11) |
(((inst >> 12) & 0xFF) << 12);
if (imm & (1 << 20))
imm |= 0xFFF00000;
registers[rd] = pc + 4;
pc += imm;
break;
2025-04-11 01:15:38 +00:00
}
2025-04-12 18:24:30 +00:00
// JALR: I-type jump.
case 0x67: {
uint32_t rd = (inst >> 7) & 0x1F;
uint32_t rs1 = (inst >> 15) & 0x1F;
int32_t imm = ((int32_t)inst) >> 20;
uint32_t temp = pc + 4;
pc = (registers[rs1] + imm) & ~1;
registers[rd] = temp;
break;
}
2025-04-11 01:15:38 +00:00
2025-04-12 18:24:30 +00:00
// LUI: U-type.
case 0x37: {
uint32_t rd = (inst >> 7) & 0x1F;
registers[rd] = inst & 0xFFFFF000;
pc += 4;
break;
}
2025-04-11 01:15:38 +00:00
2025-04-12 18:24:30 +00:00
// AUIPC: U-type.
case 0x17: {
uint32_t rd = (inst >> 7) & 0x1F;
registers[rd] = pc + (inst & 0xFFFFF000);
pc += 4;
break;
}
// Load instructions (LW only).
case 0x03: {
uint32_t rd = (inst >> 7) & 0x1F;
uint32_t rs1 = (inst >> 15) & 0x1F;
uint32_t funct3 = (inst >> 12) & 0x7;
int32_t imm = ((int32_t)inst) >> 20;
if (funct3 == 0x2) { // LW
uint32_t addr = registers[rs1] + imm;
if (addr % 4 == 0 && (addr / 4) < memory.size())
registers[rd] = memory[addr / 4];
}
pc += 4;
break;
}
// Store instructions (SW only).
case 0x23: {
uint32_t rs1 = (inst >> 15) & 0x1F;
uint32_t rs2 = (inst >> 20) & 0x1F;
uint32_t funct3 = (inst >> 12) & 0x7;
int32_t imm = (((inst >> 25) & 0x7F) << 5) | ((inst >> 7) & 0x1F);
if (imm & 0x800) imm |= 0xFFFFF000;
if (funct3 == 0x2) { // SW
uint32_t addr = registers[rs1] + imm;
if (addr % 4 == 0 && (addr / 4) < memory.size())
memory[addr / 4] = registers[rs2];
}
pc += 4;
break;
}
// ECALL: Opcode 0x73 (environment call).
// This branch simulates interrupts/system calls to “print” data to our terminal.
case 0x73: {
// For ECALL, we follow a simple convention:
// - Register x17 (a7) holds the system call number.
// - Register x10 (a0) holds the argument.
// Conventions used below:
// 1: Print integer (from x10).
// 2: Print character (the low-order 8 bits of x10).
// 3: Print string (address pointer stored in x10).
uint32_t funct3 = (inst >> 12) & 0x7;
if (funct3 == 0) {
uint32_t syscall = registers[17]; // a7
switch (syscall) {
case 1: { // Print integer.
int value = (int) registers[10]; // a0
terminalOutput += std::to_string(value) + "\n";
break;
}
case 2: { // Print character.
char ch = (char)(registers[10] & 0xFF);
terminalOutput.push_back(ch);
break;
}
case 3: { // Print string (pointer in a0).
std::string str = readString(registers[10]);
terminalOutput += str;
break;
}
default:
terminalOutput += "Unknown ECALL: " + std::to_string(syscall) + "\n";
break;
}
}
pc += 4;
break;
2025-04-11 01:15:38 +00:00
}
2025-04-12 18:24:30 +00:00
default:
// Unknown opcode halt the CPU.
halted = true;
break;
}
// Enforce that register x0 is always 0.
registers[0] = 0;
2025-04-11 01:15:38 +00:00
}
2025-04-12 18:24:30 +00:00
// Disassemble an instruction at the given address.
std::string disassembleInstruction(uint32_t address) {
if (address % 4 != 0 || (address / 4) >= memory.size())
return "Invalid address";
uint32_t inst = memory[address / 4];
uint32_t opcode = inst & 0x7F;
std::stringstream ss;
ss << "0x" << std::hex << inst << std::dec << " ";
switch (opcode) {
case 0x33: { // R-type
uint32_t rd = (inst >> 7) & 0x1F;
uint32_t rs1 = (inst >> 15) & 0x1F;
uint32_t rs2 = (inst >> 20) & 0x1F;
uint32_t funct3 = (inst >> 12) & 0x7;
uint32_t funct7 = (inst >> 25) & 0x7F;
if (funct3 == 0x0 && funct7 == 0x00)
ss << "ADD x" << rd << ", x" << rs1 << ", x" << rs2;
else if (funct3 == 0x0 && funct7 == 0x20)
ss << "SUB x" << rd << ", x" << rs1 << ", x" << rs2;
else
ss << "R-type (0x" << std::hex << inst << ")";
break;
2025-04-11 01:15:38 +00:00
}
2025-04-12 18:24:30 +00:00
case 0x13:
ss << "ADDI (or other I-type)";
break;
case 0x63:
ss << "Branch/Compare";
break;
case 0x6F:
ss << "JAL";
break;
case 0x67:
ss << "JALR";
break;
case 0x37:
ss << "LUI";
break;
case 0x17:
ss << "AUIPC";
break;
case 0x03:
ss << "LW";
break;
case 0x23:
ss << "SW";
break;
case 0x73:
ss << "ECALL";
break;
default:
ss << "Unknown opcode";
break;
}
return ss.str();
2025-04-11 01:15:38 +00:00
}
2025-04-12 18:24:30 +00:00
};
2025-04-11 01:15:38 +00:00
2025-04-12 18:24:30 +00:00
// --------------------------------------------------------------------------------
// Main: OpenGL/GLFW + ImGui Debugger and Terminal UI.
// --------------------------------------------------------------------------------
int main(int, char**) {
// Initialize GLFW.
if (!glfwInit()) {
fprintf(stderr, "Failed to initialize GLFW\n");
return 1;
}
const char* glsl_version = "#version 130";
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 0);
GLFWwindow* window = glfwCreateWindow(1280, 720, "RISC-V Emulator with Terminal", NULL, NULL);
if (window == nullptr)
return 1;
2025-04-11 01:15:38 +00:00
glfwMakeContextCurrent(window);
glfwSwapInterval(1);
2025-04-12 18:24:30 +00:00
// Initialize ImGui.
2025-04-11 01:15:38 +00:00
IMGUI_CHECKVERSION();
ImGui::CreateContext();
2025-04-12 18:24:30 +00:00
ImGuiIO& io = ImGui::GetIO(); (void)io;
2025-04-11 01:15:38 +00:00
ImGui::StyleColorsDark();
2025-04-12 18:24:30 +00:00
ImGui_ImplGlfw_InitForOpenGL(window, true);
ImGui_ImplOpenGL3_Init(glsl_version);
2025-04-11 01:15:38 +00:00
2025-04-12 18:24:30 +00:00
// Create the emulator instance with 1024 words of memory.
RiscVEmulator emulator(1024);
2025-04-11 01:15:38 +00:00
2025-04-12 18:24:30 +00:00
emulator.loadProgram(program_data);
2025-04-11 01:15:38 +00:00
2025-04-12 18:24:30 +00:00
// Debugger control flags.
bool running = false;
double lastStepTime = glfwGetTime();
const double stepInterval = 0.1; // Auto-step every 0.1 sec in "running" mode.
2025-04-11 01:15:38 +00:00
2025-04-12 18:24:30 +00:00
// Main loop.
2025-04-11 01:15:38 +00:00
while (!glfwWindowShouldClose(window)) {
glfwPollEvents();
2025-04-12 18:24:30 +00:00
double currentTime = glfwGetTime();
if (running && (currentTime - lastStepTime) >= stepInterval && !emulator.halted) {
emulator.step();
lastStepTime = currentTime;
}
2025-04-11 01:15:38 +00:00
ImGui_ImplOpenGL3_NewFrame();
ImGui_ImplGlfw_NewFrame();
ImGui::NewFrame();
2025-04-12 18:24:30 +00:00
// CPU Control Panel.
ImGui::Begin("CPU Control");
if (ImGui::Button("Reset")) {
emulator.reset();
emulator.loadProgram(program);
running = false;
}
2025-04-11 01:15:38 +00:00
ImGui::SameLine();
2025-04-12 18:24:30 +00:00
if (ImGui::Button("Start"))
running = true;
2025-04-11 01:15:38 +00:00
ImGui::SameLine();
2025-04-12 18:24:30 +00:00
if (ImGui::Button("Stop"))
running = false;
ImGui::SameLine();
if (ImGui::Button("Step") && !emulator.halted)
emulator.step();
ImGui::Text("PC: 0x%08X", emulator.pc);
if (emulator.halted)
ImGui::TextColored(ImVec4(1, 0, 0, 1), "CPU Halted");
ImGui::Separator();
2025-04-11 01:15:38 +00:00
2025-04-12 18:24:30 +00:00
// Registers display.
if (ImGui::BeginTable("Registers", 4, ImGuiTableFlags_Borders | ImGuiTableFlags_RowBg)) {
ImGui::TableSetupColumn("Reg");
ImGui::TableSetupColumn("Value");
ImGui::TableSetupColumn("Reg");
ImGui::TableSetupColumn("Value");
ImGui::TableHeadersRow();
for (int i = 0; i < 32; i += 2) {
ImGui::TableNextRow();
ImGui::TableSetColumnIndex(0);
ImGui::Text("x%d", i);
ImGui::TableSetColumnIndex(1);
ImGui::Text("0x%08X", emulator.registers[i]);
ImGui::TableSetColumnIndex(2);
ImGui::Text("x%d", i+1);
ImGui::TableSetColumnIndex(3);
ImGui::Text("0x%08X", emulator.registers[i+1]);
}
ImGui::EndTable();
}
ImGui::Text("Flags: Z[%d] N[%d] C[%d] O[%d]",
emulator.flags.zero, emulator.flags.negative,
emulator.flags.carry, emulator.flags.overflow);
ImGui::Separator();
2025-04-11 01:15:38 +00:00
2025-04-12 18:24:30 +00:00
// Disassembly view.
ImGui::BeginChild("Disassembly", ImVec2(0, 150), true);
ImGui::Text("Disassembly:");
for (int i = 0; i < 10; i++) {
uint32_t addr = emulator.pc + i * 4;
std::string line = emulator.disassembleInstruction(addr);
if (i == 0)
ImGui::TextColored(ImVec4(1, 1, 0, 1), "0x%08X: %s", addr, line.c_str());
else
ImGui::Text("0x%08X: %s", addr, line.c_str());
}
ImGui::EndChild();
2025-04-11 01:15:38 +00:00
ImGui::End();
2025-04-12 18:24:30 +00:00
// Memory Viewer in a grid.
ImGui::Begin("Memory Viewer");
const int columns = 16, rows = 16;
if (ImGui::BeginTable("MemoryGrid", columns, ImGuiTableFlags_Borders)) {
for (int col = 0; col < columns; col++) {
ImGui::TableSetupColumn("");
2025-04-11 01:15:38 +00:00
}
2025-04-12 18:24:30 +00:00
ImGui::TableHeadersRow();
int wordIndex = 0;
for (int r = 0; r < rows; r++) {
ImGui::TableNextRow();
for (int c = 0; c < columns; c++) {
ImGui::TableSetColumnIndex(c);
if (wordIndex < emulator.memory.size())
ImGui::Text("0x%08X", emulator.memory[wordIndex]);
else
ImGui::Text("----");
wordIndex++;
}
}
ImGui::EndTable();
2025-04-11 01:15:38 +00:00
}
2025-04-12 18:24:30 +00:00
ImGui::End();
2025-04-11 01:15:38 +00:00
2025-04-12 18:24:30 +00:00
// Terminal screen to display ECALL outputs.
ImGui::Begin("Terminal");
// Optionally, you can add a "Clear" button.
if (ImGui::Button("Clear"))
emulator.terminalOutput.clear();
ImGui::Separator();
// Display the terminal output in a scrolling region.
ImGui::BeginChild("ScrollingRegion", ImVec2(0, 150), false, ImGuiWindowFlags_HorizontalScrollbar);
ImGui::TextUnformatted(emulator.terminalOutput.c_str());
ImGui::EndChild();
2025-04-11 01:15:38 +00:00
ImGui::End();
2025-04-12 18:24:30 +00:00
// Rendering.
2025-04-11 01:15:38 +00:00
ImGui::Render();
int display_w, display_h;
glfwGetFramebufferSize(window, &display_w, &display_h);
glViewport(0, 0, display_w, display_h);
2025-04-12 18:24:30 +00:00
glClearColor(0.45f, 0.55f, 0.60f, 1.00f);
2025-04-11 01:15:38 +00:00
glClear(GL_COLOR_BUFFER_BIT);
ImGui_ImplOpenGL3_RenderDrawData(ImGui::GetDrawData());
glfwSwapBuffers(window);
}
2025-04-12 18:24:30 +00:00
// Cleanup.
2025-04-11 01:15:38 +00:00
ImGui_ImplOpenGL3_Shutdown();
ImGui_ImplGlfw_Shutdown();
ImGui::DestroyContext();
glfwDestroyWindow(window);
glfwTerminate();
return 0;
}